BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 9776725)

  • 1. Slow conduction in cardiac tissue, I: effects of a reduction of excitability versus a reduction of electrical coupling on microconduction.
    Rohr S; Kucera JP; Kléber AG
    Circ Res; 1998 Oct; 83(8):781-94. PubMed ID: 9776725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow conduction in cardiac tissue, II: effects of branching tissue geometry.
    Kucera JP; Kléber AG; Rohr S
    Circ Res; 1998 Oct; 83(8):795-805. PubMed ID: 9776726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow conduction in cardiac tissue: insights from optical mapping at the cellular level.
    Kucera JP; Kléber AG; Rohr S
    J Electrocardiol; 2001; 34 Suppl():57-64. PubMed ID: 11781937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micropatterns of propagation.
    Lee PJ; Pogwizd SM
    Adv Cardiol; 2006; 42():86-106. PubMed ID: 16646586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of gap junctions in the propagation of the cardiac action potential.
    Rohr S
    Cardiovasc Res; 2004 May; 62(2):309-22. PubMed ID: 15094351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical recording of impulse propagation in designer cultures. Cardiac tissue architectures inducing ultra-slow conduction.
    Rohr S; Kléber AG; Kucera JP
    Trends Cardiovasc Med; 1999 Oct; 9(7):173-9. PubMed ID: 10881747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the gap junction uncoupler palmitoleic acid on the activation and repolarization wavefronts in isolated rabbit hearts.
    Dhein S; Krüsemann K; Schaefer T
    Br J Pharmacol; 1999 Dec; 128(7):1375-84. PubMed ID: 10602315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic activation spread in heart cell monolayers assessed by high-resolution optical mapping. Role of tissue discontinuities.
    Fast VG; Darrow BJ; Saffitz JE; Kléber AG
    Circ Res; 1996 Jul; 79(1):115-27. PubMed ID: 8925559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conduction slowing by the gap junctional uncoupler carbenoxolone.
    de Groot JR; Veenstra T; Verkerk AO; Wilders R; Smits JP; Wilms-Schopman FJ; Wiegerinck RF; Bourier J; Belterman CN; Coronel R; Verheijck EE
    Cardiovasc Res; 2003 Nov; 60(2):288-97. PubMed ID: 14613858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling.
    Shaw RM; Rudy Y
    Circ Res; 1997 Nov; 81(5):727-41. PubMed ID: 9351447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of skeletal but not cardiac Na+ channel isoform preserves normal conduction in a depolarized cardiac syncytium.
    Protas L; Dun W; Jia Z; Lu J; Bucchi A; Kumari S; Chen M; Cohen IS; Rosen MR; Entcheva E; Robinson RB
    Cardiovasc Res; 2009 Feb; 81(3):528-35. PubMed ID: 18977767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological modulation of cardiac gap junctions to enhance cardiac conduction: evidence supporting a novel target for antiarrhythmic therapy.
    Eloff BC; Gilat E; Wan X; Rosenbaum DS
    Circulation; 2003 Dec; 108(25):3157-63. PubMed ID: 14656916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of the calcium inward current in cardiac impulse propagation: induction of unidirectional conduction block by nifedipine and reversal by Bay K 8644.
    Rohr S; Kucera JP
    Biophys J; 1997 Feb; 72(2 Pt 1):754-66. PubMed ID: 9017201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potassium channels in the Cx43 gap junction perinexus modulate ephaptic coupling: an experimental and modeling study.
    Veeraraghavan R; Lin J; Keener JP; Gourdie R; Poelzing S
    Pflugers Arch; 2016 Oct; 468(10):1651-61. PubMed ID: 27510622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rat caval vein myocardium undergoes changes in conduction characteristics during postnatal ontogenesis.
    Ivanova AD; Samoilova DV; Razumov AA; Kuzmin VS
    Pflugers Arch; 2019 Dec; 471(11-12):1493-1503. PubMed ID: 31654199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage-independent effects of extracellular K+ on the Na+ current and phase 0 of the action potential in isolated cardiac myocytes.
    Whalley DW; Wendt DJ; Starmer CF; Rudy Y; Grant AO
    Circ Res; 1994 Sep; 75(3):491-502. PubMed ID: 8062422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conduction block in Purkinje fibers by homogeneous versus localized decrease of the gap junction conductance.
    Daleau P; Délèze J
    Can J Physiol Pharmacol; 1998 Jun; 76(6):630-41. PubMed ID: 9923401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical propagation in synthetic ventricular myocyte strands from germline connexin43 knockout mice.
    Beauchamp P; Choby C; Desplantez T; de Peyer K; Green K; Yamada KA; Weingart R; Saffitz JE; Kléber AG
    Circ Res; 2004 Jul; 95(2):170-8. PubMed ID: 15192022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-ohmic tissue conduction in cardiac electrophysiology: Upscaling the non-linear voltage-dependent conductance of gap junctions.
    Hurtado DE; Jilberto J; Panasenko G
    PLoS Comput Biol; 2020 Feb; 16(2):e1007232. PubMed ID: 32097410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic insights into very slow conduction in branching cardiac tissue: a model study.
    Kucera JP; Rudy Y
    Circ Res; 2001 Oct; 89(9):799-806. PubMed ID: 11679410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.