These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 9777492)

  • 1. A branch-and-bound method for optimal atom-type assignment in de novo ligand design.
    Todorov NP; Dean PM
    J Comput Aided Mol Des; 1998 Jul; 12(4):335-49. PubMed ID: 9777492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The atom assignment problem in automated de novo drug design. 4. Tests for site-directed fragment placement based on molecular complementarity.
    Barakat MT; Dean PM
    J Comput Aided Mol Des; 1995 Oct; 9(5):448-56. PubMed ID: 8594162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-SITE: use of empirically derived atomic packing preferences to identify favourable interaction regions in the binding sites of proteins.
    Laskowski RA; Thornton JM; Humblet C; Singh J
    J Mol Biol; 1996 May; 259(1):175-201. PubMed ID: 8648645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the use of LUDI to search the Fine Chemicals Directory for ligands of proteins of known three-dimensional structure.
    Böhm HJ
    J Comput Aided Mol Des; 1994 Oct; 8(5):623-32. PubMed ID: 7876904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PRO_LIGAND: an approach to de novo molecular design. 6. Flexible fitting in the design of peptides.
    Murray CW; Clark DE; Byrne DG
    J Comput Aided Mol Des; 1995 Oct; 9(5):381-95. PubMed ID: 8594156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The atom assignment problem in automated de novo drug design. 3. Algorithms for optimization of fragment placement onto 3D molecular graphs.
    Barakat MT; Dean PM
    J Comput Aided Mol Des; 1995 Aug; 9(4):359-72. PubMed ID: 8523045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QXP: powerful, rapid computer algorithms for structure-based drug design.
    McMartin C; Bohacek RS
    J Comput Aided Mol Des; 1997 Jul; 11(4):333-44. PubMed ID: 9334900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and computational mapping of the binding surface of a crystalline protein.
    English AC; Groom CR; Hubbard RE
    Protein Eng; 2001 Jan; 14(1):47-59. PubMed ID: 11287678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RASSE: a new method for structure-based drug design.
    Luo Z; Wang R; Lai L
    J Chem Inf Comput Sci; 1996; 36(6):1187-94. PubMed ID: 8941995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Very fast prediction and rationalization of pKa values for protein-ligand complexes.
    Bas DC; Rogers DM; Jensen JH
    Proteins; 2008 Nov; 73(3):765-83. PubMed ID: 18498103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SQ: a program for rapidly producing pharmacophorically relevent molecular superpositions.
    Miller MD; Sheridan RP; Kearsley SK
    J Med Chem; 1999 May; 42(9):1505-14. PubMed ID: 10229621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Definition and display of steric, hydrophobic, and hydrogen-bonding properties of ligand binding sites in proteins using Lee and Richards accessible surface: validation of a high-resolution graphical tool for drug design.
    Bohacek RS; McMartin C
    J Med Chem; 1992 May; 35(10):1671-84. PubMed ID: 1588550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacophore-based molecular docking to account for ligand flexibility.
    Joseph-McCarthy D; Thomas BE; Belmarsh M; Moustakas D; Alvarez JC
    Proteins; 2003 May; 51(2):172-88. PubMed ID: 12660987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational combinatorial ligand design: application to human alpha-thrombin.
    Caflisch A
    J Comput Aided Mol Des; 1996 Oct; 10(5):372-96. PubMed ID: 8951649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method for biomolecular structural recognition and docking allowing conformational flexibility.
    Sandak B; Nussinov R; Wolfson HJ
    J Comput Biol; 1998; 5(4):631-54. PubMed ID: 10072081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of heuristic search algorithms for molecular docking.
    Westhead DR; Clark DE; Murray CW
    J Comput Aided Mol Des; 1997 May; 11(3):209-28. PubMed ID: 9263849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Empirical free energy as a target function in docking and design: application to HIV-1 protease inhibitors.
    King BL; Vajda S; DeLisi C
    FEBS Lett; 1996 Apr; 384(1):87-91. PubMed ID: 8797810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo ligand design to an ensemble of protein structures.
    Todorov NP; Buenemann CL; Alberts IL
    Proteins; 2006 Jul; 64(1):43-59. PubMed ID: 16555306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexibases: a way to enhance the use of molecular docking methods.
    Kearsley SK; Underwood DJ; Sheridan RP; Miller MD
    J Comput Aided Mol Des; 1994 Oct; 8(5):565-82. PubMed ID: 7876901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The computer program LUDI: a new method for the de novo design of enzyme inhibitors.
    Böhm HJ
    J Comput Aided Mol Des; 1992 Feb; 6(1):61-78. PubMed ID: 1583540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.