These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 9777651)

  • 1. The eyes of deep-sea fish. I: Lens pigmentation, tapeta and visual pigments.
    Douglas RH; Partridge JC; Marshall NJ
    Prog Retin Eye Res; 1998 Oct; 17(4):597-636. PubMed ID: 9777651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-wave sensitivity in deep-sea stomiid dragonfish with far-red bioluminescence: evidence for a dietary origin of the chlorophyll-derived retinal photosensitizer of Malacosteus niger.
    Douglas RH; Mullineaux CW; Partridge JC
    Philos Trans R Soc Lond B Biol Sci; 2000 Sep; 355(1401):1269-72. PubMed ID: 11079412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptations of visual pigments to the photic environment of the deep sea.
    Crescitelli F
    J Exp Zool Suppl; 1990; 5():66-75. PubMed ID: 1982497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacosteus niger, a deep-sea dragon fish with far red bioluminescence.
    Douglas RH; Partridge JC; Dulai KS; Hunt DM; Mullineaux CW; Hynninen PH
    Vision Res; 1999 Aug; 39(17):2817-32. PubMed ID: 10492812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 'Yellow lens' eyes of a stomiatoid deep-sea fish, Malacosteus niger.
    Somiya H
    Proc R Soc Lond B Biol Sci; 1982 Jul; 215(1201):481-9. PubMed ID: 6127717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interspecific variation in the visual pigments of deep-sea fishes.
    Partridge JC; Shand J; Archer SN; Lythgoe JN; van Groningen-Luyben WA
    J Comp Physiol A; 1989 Jan; 164(4):513-29. PubMed ID: 2926694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localisation and origin of the bacteriochlorophyll-derived photosensitizer in the retina of the deep-sea dragon fish Malacosteus niger.
    Douglas RH; Genner MJ; Hudson AG; Partridge JC; Wagner HJ
    Sci Rep; 2016 Dec; 6():39395. PubMed ID: 27996027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kynurenine identified as the short-wave absorbing lens pigment in the deep-sea fish Stylephorus chordatus.
    Thorpe A; Truscott RJ; Douglas RH
    Exp Eye Res; 1992 Jul; 55(1):53-7. PubMed ID: 1397130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral tuning in the eyes of deep-sea lanternfishes (Myctophidae): a novel sexually dimorphic intra-ocular filter.
    de Busserolles F; Hart NS; Hunt DM; Davies WI; Marshall NJ; Clarke MW; Hahne D; Collin SP
    Brain Behav Evol; 2015; 85(2):77-93. PubMed ID: 25766394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of elevated hydrostatic pressure on the spectral absorption of deep-sea fish visual pigments.
    Partridge JC; White EM; Douglas RH
    J Exp Biol; 2006 Jan; 209(Pt 2):314-9. PubMed ID: 16391353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pineal organs of deep-sea fish: photopigments and structure.
    Bowmaker JK; Wagner HJ
    J Exp Biol; 2004 Jun; 207(Pt 14):2379-87. PubMed ID: 15184510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vision in the deep sea.
    Warrant EJ; Locket NA
    Biol Rev Camb Philos Soc; 2004 Aug; 79(3):671-712. PubMed ID: 15366767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual pigments and environmental light.
    Lythgoe JN
    Vision Res; 1984; 24(11):1539-50. PubMed ID: 6398560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterns of pigmentation in the eye lens of the deep-sea hatchetfish, Argyropelecus affinis Garman.
    McFall-Ngai M; Crescitelli F; Childress J; Horwitz J
    J Comp Physiol A; 1986 Dec; 159(6):791-800. PubMed ID: 3806437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative innervation of cephalic photophores of the loosejaw dragonfishes (Teleostei: Stomiiformes: Stomiidae): evidence for parallel evolution of long-wave bioluminescence.
    Kenaley CP
    J Morphol; 2010 Apr; 271(4):418-37. PubMed ID: 19924766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Red fluorescence in reef fish: a novel signalling mechanism?
    Michiels NK; Anthes N; Hart NS; Herler J; Meixner AJ; Schleifenbaum F; Schulte G; Siebeck UE; Sprenger D; Wucherer MF
    BMC Ecol; 2008 Sep; 8():16. PubMed ID: 18796150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptations to an extreme environment: retinal organisation and spectral properties of photoreceptors in Antarctic notothenioid fish.
    Pointer MA; Cheng CH; Bowmaker JK; Parry JW; Soto N; Jeffery G; Cowing JA; Hunt DM
    J Exp Biol; 2005 Jun; 208(Pt 12):2363-76. PubMed ID: 15939776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grouped retinae and tapetal cups in some Teleostian fish: occurrence, structure, and function.
    Francke M; Kreysing M; Mack A; Engelmann J; Karl A; Makarov F; Guck J; Kolle M; Wolburg H; Pusch R; von der Emde G; Schuster S; Wagner HJ; Reichenbach A
    Prog Retin Eye Res; 2014 Jan; 38():43-69. PubMed ID: 24157316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aristostomias scintillans (Malacosteidae): a deep-sea fish with visual pigments apparently adapted to its own bioluminescence.
    O'Day WT; Fernandez HR
    Vision Res; 1974 Jul; 14(7):545-50. PubMed ID: 4424870
    [No Abstract]   [Full Text] [Related]  

  • 20. Yellow intraocular filters in fishes.
    Heinermann PH
    Exp Biol; 1984; 43(2):127-47. PubMed ID: 6398222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.