BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 9777704)

  • 1. On the helical conformation of un-ionized poly(gamma-D-glutamic acid).
    Zanuy D; Alemán C; Muñoz-Guerra S
    Int J Biol Macromol; 1998 Oct; 23(3):175-84. PubMed ID: 9777704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(gamma-glutamic acid) in aqueous solution: molecular dynamics simulations of 10- and 20-residue chains at different temperatures.
    Zanuy D; Alemán C
    Biomacromolecules; 2001; 2(3):651-7. PubMed ID: 11710017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(phenylacetylene)s bearing a peptide pendant: helical conformational changes of the polymer backbone stimulated by the pendant conformational change.
    Maeda K; Kamiya N; Yashima E
    Chemistry; 2004 Aug; 10(16):4000-10. PubMed ID: 15317054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics study of complexes of poly(glutamate) and dodecyltrimethylammonium.
    Zanuy D; Alemán C
    Biomacromolecules; 2007 Feb; 8(2):663-71. PubMed ID: 17291090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyelectrolyte conformational transition in aqueous solvent mixture influenced by hydrophobic interactions and hydrogen bonding effects: PAA-water-ethanol.
    Sappidi P; Natarajan U
    J Mol Graph Model; 2016 Mar; 64():60-74. PubMed ID: 26803232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Helix bending in alamethicin: molecular dynamics simulations and amide hydrogen exchange in methanol.
    Gibbs N; Sessions RB; Williams PB; Dempsey CE
    Biophys J; 1997 Jun; 72(6):2490-5. PubMed ID: 9168025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformation of poly(γ-glutamic acid) in aqueous solution.
    Muroga Y; Nakaya A; Inoue A; Itoh D; Abiru M; Wada K; Takada M; Ikake H; Shimizu S
    Biopolymers; 2016 Apr; 105(4):191-8. PubMed ID: 26574908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applicability of broken-rodlike chain model to conformational analysis of polypeptide chain.
    Muroga Y
    Biopolymers; 2000 Jul; 54(1):58-63. PubMed ID: 10799981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular modeling of conformational properties of oligodepsipeptides.
    Zhang J; King M; Suggs L; Ren P
    Biomacromolecules; 2007 Oct; 8(10):3015-24. PubMed ID: 17877396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UV resonance Raman determination of polyproline II, extended 2.5(1)-helix, and beta-sheet Psi angle energy landscape in poly-L-lysine and poly-L-glutamic acid.
    Mikhonin AV; Myshakina NS; Bykov SV; Asher SA
    J Am Chem Soc; 2005 Jun; 127(21):7712-20. PubMed ID: 15913361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformations and molecular interactions of poly-γ-glutamic acid as a soluble microbial product in aqueous solutions.
    Wang LL; Chen JT; Wang LF; Wu S; Zhang GZ; Yu HQ; Ye XD; Shi QS
    Sci Rep; 2017 Oct; 7(1):12787. PubMed ID: 28986570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intramolecular hydrogen bonding in disubstituted ethanes. A comparison of NH...O- and OH...O- Hydrogen bonding through conformational analysis of 4-amino-4-oxobutanoate (succinamate) and monohydrogen 1,4-butanoate (monohydrogen succinate) anions.
    Rudner MS; Jeremic S; Petterson KA; Kent DR; Brown KA; Drake MD; Goddard WA; Roberts JD
    J Phys Chem A; 2005 Oct; 109(40):9076-82. PubMed ID: 16332014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion coefficient and the secondary structure of poly-L-glutamic acid in aqueous solution.
    Inoue K; Baden N; Terazima M
    J Phys Chem B; 2005 Dec; 109(47):22623-8. PubMed ID: 16853945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionized trilysine: a model system for understanding the nonrandom structure of poly-L-lysine and lysine-containing motifs in proteins.
    Verbaro DJ; Mathieu D; Toal SE; Schwalbe H; Schweitzer-Stenner R
    J Phys Chem B; 2012 Jul; 116(28):8084-94. PubMed ID: 22712805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent specified conformation in poly(alpha-L-glutamic acid) thin films.
    Wu X; Yang S; Njus JM; Nagarajan R; Cholli AL; Samuelson LA; Kumar J
    Biomacromolecules; 2004; 5(4):1214-8. PubMed ID: 15244433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bifurcated hydrogen bonds stabilize fibrils of poly(L-glutamic) acid.
    Fulara A; Dzwolak W
    J Phys Chem B; 2010 Jun; 114(24):8278-83. PubMed ID: 20509699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oligo(p-phenylene-ethynylene)s with backbone conformation controlled by competitive intramolecular hydrogen bonds.
    Hu W; Yan Q; Zhao D
    Chemistry; 2011 Jun; 17(25):7087-94. PubMed ID: 21557348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of sodium chloride on poly-l-glutamate conformation.
    Fedorov MV; Goodman JM; Schumm S
    Chem Commun (Camb); 2009 Feb; (8):896-8. PubMed ID: 19214308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competition between amide stacking and intramolecular H bonds in γ-peptide derivatives: controlling nearest-neighbor preferences.
    James WH; Buchanan EG; Guo L; Gellman SH; Zwier TS
    J Phys Chem A; 2011 Nov; 115(43):11960-70. PubMed ID: 21928850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A molecular dynamics study of the stoichiometric complex formed by poly (alpha, L-glutamate) and octyltrimethylammonium ions in chloroform solution.
    Zanuy D; Alemán C; Muñoz-Guerra S
    Biopolymers; 2002 Mar; 63(3):151-62. PubMed ID: 11787003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.