These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 9778573)

  • 1. Studies of the source of glucose in the extracellular compartment of the rat brain.
    Fillenz M; Lowry JP
    Dev Neurosci; 1998; 20(4-5):365-8. PubMed ID: 9778573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relation between cerebral blood flow and extracellular glucose in rat striatum during mild hypoxia and hyperoxia.
    Lowry JP; Demestre M; Fillenz M
    Dev Neurosci; 1998; 20(1):52-8. PubMed ID: 9600390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanisms controlling physiologically stimulated changes in rat brain glucose and lactate: a microdialysis study.
    Fray AE; Forsyth RJ; Boutelle MG; Fillenz M
    J Physiol; 1996 Oct; 496 ( Pt 1)(Pt 1):49-57. PubMed ID: 8910195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous monitoring of extracellular glucose concentrations in the striatum of freely moving rats with an implanted glucose biosensor.
    Lowry JP; O'Neill RD; Boutelle MG; Fillenz M
    J Neurochem; 1998 Jan; 70(1):391-6. PubMed ID: 9422386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic changes in glucose and lactate in the cortex of the freely moving rat monitored using microdialysis.
    Jones DA; Ros J; Landolt H; Fillenz M; Boutelle MG
    J Neurochem; 2000 Oct; 75(4):1703-8. PubMed ID: 10987853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beta-adrenergic blockade attenuates insulin resistance induced by tumor necrosis factor.
    Lang CH
    Am J Physiol; 1993 May; 264(5 Pt 2):R984-91. PubMed ID: 8098917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sexual pheromone or conventional odors increase extracellular lactate without changing glucose utilization in specific brain areas of the rat.
    Fornai F; Orzi F
    Neuroreport; 2001 Jan; 12(1):63-9. PubMed ID: 11201093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propranolol increases the threshold for lidocaine-induced convulsions in awake rats: a direct effect on the brain.
    Nakamura T; Oda Y; Takahashi R; Tanaka K; Hase I; Asada A
    Anesth Analg; 2008 May; 106(5):1450-5, table of contents. PubMed ID: 18420859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orchidectomy increases beta-adrenoceptor activation-mediated neuronal nitric oxide and noradrenaline release in rat mesenteric artery.
    Blanco-Rivero J; Aras-López R; Del Campo L; Sagredo A; Balfagón G; Ferrer M
    Neuroendocrinology; 2006; 84(6):378-85. PubMed ID: 17230011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alpha-1 adrenergic stimulation of glucose uptake in rat white adipocytes.
    Faintrenie G; Géloën A
    J Pharmacol Exp Ther; 1998 Aug; 286(2):607-10. PubMed ID: 9694910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. beta-adrenergic antagonism alters the behavioral and neurochemical responses to cocaine.
    Harris GC; Hedaya MA; Pan WJ; Kalivas P
    Neuropsychopharmacology; 1996 Mar; 14(3):195-204. PubMed ID: 8866703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. β-adrenergic receptor inhibition affects cerebral glucose metabolism, motor performance, and inflammatory response after traumatic brain injury.
    Ley EJ; Clond MA; Bukur M; Park R; Chervonski M; Dagliyan G; Margulies DR; Lyden PD; Conti PS; Salim A
    J Trauma Acute Care Surg; 2012 Jul; 73(1):33-40. PubMed ID: 22743370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological actions on hypoxic increase of cortical extracellular K+ ion: doesn't it explain cerebrovascular effects of some drugs in hypoxia?
    Nataf N; Gourmel B; Rossignol P
    Acta Neurol Scand Suppl; 1977; 64():366-7. PubMed ID: 268835
    [No Abstract]   [Full Text] [Related]  

  • 14. Insulin increases glycolysis without further vasodilation in porcine coronary arteries exposed to hypoxia.
    Frøbert O; Bagger JP; Simonsen U; Lund S; Gravholt CH
    Clin Sci (Lond); 2004 Aug; 107(2):213-20. PubMed ID: 15070396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of rat muscle insulin resistance by epinephrine is accompanied by increased interstitial glucose and lactate concentrations.
    Niklasson M; Holmäng A; Lönnroth P
    Diabetologia; 1998 Dec; 41(12):1467-73. PubMed ID: 9867214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Downregulation of propranolol-sensitive beta-adrenoceptor signaling after inhibition of nitric oxide synthesis.
    Whalen EJ; Bates JN; Johnson AK; Lewis SJ
    Br J Pharmacol; 2006 Apr; 147(7):755-64. PubMed ID: 16474417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for uncoupling of oxygen and glucose utilization during neuronal activation in rat striatum.
    Lowry JP; Fillenz M
    J Physiol; 1997 Jan; 498 ( Pt 2)(Pt 2):497-501. PubMed ID: 9032696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of glucose load on brain extracellular lactate concentration in conscious rats using a microdialysis technique.
    Harada M; Sawa T; Okuda C; Matsuda T; Tanaka Y
    Horm Metab Res; 1993 Nov; 25(11):560-3. PubMed ID: 8288157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sepsis-induced insulin resistance in rats is mediated by a beta-adrenergic mechanism.
    Lang CH
    Am J Physiol; 1992 Oct; 263(4 Pt 1):E703-11. PubMed ID: 1329550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antagonism of the antidepressant-like effects of clenbuterol by central administration of beta-adrenergic antagonists in rats.
    Zhang HT; Huang Y; O'Donnell JM
    Psychopharmacology (Berl); 2003 Oct; 170(1):102-7. PubMed ID: 12898120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.