These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 977876)

  • 1. Glyoxalase I enzyme studies. 2. Nuclear magnetic resonance evidence for an enediol-proton transfer mechanism.
    Hall SS; Doweyko AM; Jordan F
    J Am Chem Soc; 1976 Nov; 98(23):7460-1. PubMed ID: 977876
    [No Abstract]   [Full Text] [Related]  

  • 2. Hydrophobic binding is not an independent stereochemical determinant in the yeast glyoxalase I reaction.
    Creighton DJ; Weiner A; Buettner L
    Biophys Chem; 1980 Apr; 11(2):265-9. PubMed ID: 6989412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial transition-state inhibitors of glyoxalase I from human erythrocytes, yeast and rat liver.
    Douglas KT; Gohel DI; Nadvi IN; Quilter AJ; Seddon AP
    Biochim Biophys Acta; 1985 May; 829(1):109-18. PubMed ID: 3888271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence and nuclear relaxation enhancement studies of the binding of glutathione derivatives to manganese-reconstituted glyoxalase I from human erythrocytes. A model for the catalytic mechanism of the enzyme involving a hydrated metal ion.
    Sellin S; Eriksson LE; Mannervik B
    Biochemistry; 1982 Sep; 21(20):4850-7. PubMed ID: 7138835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of shikimic acid into 2-crotonyloxymethyl-(4R,5R,6S)-4,5,6-trihydroxycyclohex-2- ene analogous to a glyoxalase I inhibitor.
    Jung M
    J Antibiot (Tokyo); 1987 May; 40(5):720-2. PubMed ID: 3610828
    [No Abstract]   [Full Text] [Related]  

  • 6. Nuclear relaxation studies of the role of the essential metal in glyoxalase I.
    Sellin S; Rosevear PR; Mannervik B; Mildvan AS
    J Biol Chem; 1982 Sep; 257(17):10023-9. PubMed ID: 7107595
    [No Abstract]   [Full Text] [Related]  

  • 7. Inhibition of glyoxalase I by new squaric acid derivatives.
    Kraus JL; Castaing M
    Res Commun Chem Pathol Pharmacol; 1989 Mar; 63(3):467-70. PubMed ID: 2727397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and kinetic evaluation of S- and N-substituted cysteinylglycines as inhibitors of glyoxalase I.
    Lyon PA; Vince R
    J Med Chem; 1977 Jan; 20(1):77-88. PubMed ID: 833829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isomerization of (R)- and (S)-glutathiolactaldehydes by glyoxalase I: the case for dichotomous stereochemical behavior in a single active site.
    Landro JA; Brush EJ; Kozarich JW
    Biochemistry; 1992 Jul; 31(26):6069-77. PubMed ID: 1627549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure of a glyoxalase I inhibitor and its chemical reactivity with SH-compounds.
    Chimura H; Nakamura H; Takita T; Takeuchi T; Umezawa H
    J Antibiot (Tokyo); 1975 Oct; 28(10):743-8. PubMed ID: 1184466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and biological activity of a new squaric acid-formylmethionine peptide conjugate.
    Kraus JL; Castaing M
    Res Commun Chem Pathol Pharmacol; 1989 Aug; 65(2):229-36. PubMed ID: 2587840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QSAR of the inhibition of glyoxalase by S-substituted glutathiones.
    Silipo C; Hansch C
    Farmaco Sci; 1979 Jan; 34(1):3-10. PubMed ID: 553818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of glyoxalase I purified from yeast (Saccharomyces cerevisiae) with the enzyme from mammalian sources.
    Marmstål E; Aronsson AC; Mannervik B
    Biochem J; 1979 Oct; 183(1):23-30. PubMed ID: 393249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of the glyoxalase I reaction, and the effect of ophthalmic acid as an inhibitor.
    CLIFFE EE; WALEY SG
    Biochem J; 1961 Jun; 79(3):475-82. PubMed ID: 13694091
    [No Abstract]   [Full Text] [Related]  

  • 15. Inhibition of mammalian glyoxalase I (lactoylglutathione lyase) by N-acylated S-blocked glutathione derivatives as a probe for the role of the N-site of glutathione in glyoxalase I mechanism.
    Al-Timari A; Douglas KT
    Biochim Biophys Acta; 1986 Mar; 870(1):160-8. PubMed ID: 3947646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glyoxalase enzyme system in human muscular dystrophy.
    Kar NC; Pearson CM
    Clin Chim Acta; 1975 Nov; 65(1):153-5. PubMed ID: 1192606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concanavalin A increases glyoxalase enzyme activities in polymorphonuclear leukocytes and lymphocytes.
    Gillespie E
    J Immunol; 1978 Sep; 121(3):923-5. PubMed ID: 690442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Glyoxalase I and its application to production of S-lactoylglutathione].
    Rhee H; Kimura A
    Tanpakushitsu Kakusan Koso; 1988 Jul; 33(9):1610-4. PubMed ID: 3074382
    [No Abstract]   [Full Text] [Related]  

  • 19. Glyoxalase I: mechanism-based inhibitors.
    Jordan F; Cohen JF; Wang CT; Wilmott JM; Hall SS; Foxall DL
    Drug Metab Rev; 1983; 14(4):723-40. PubMed ID: 6352223
    [No Abstract]   [Full Text] [Related]  

  • 20. Mechanism of the action of glyoxalase I.
    ROSE IA
    Biochim Biophys Acta; 1957 Jul; 25(1):214-5. PubMed ID: 13445752
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.