These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 9778795)
1. Transient mRNA responses in chemostat cultures as a method of defining putative regulatory elements: application to genes involved in Saccharomyces cerevisiae acetyl-coenzyme A metabolism. van den Berg MA; de Jong-Gubbels P; Steensma HY Yeast; 1998 Sep; 14(12):1089-104. PubMed ID: 9778795 [TBL] [Abstract][Full Text] [Related]
2. The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. van den Berg MA; de Jong-Gubbels P; Kortland CJ; van Dijken JP; Pronk JT; Steensma HY J Biol Chem; 1996 Nov; 271(46):28953-9. PubMed ID: 8910545 [TBL] [Abstract][Full Text] [Related]
3. Cloning and disruption of a gene required for growth on acetate but not on ethanol: the acetyl-coenzyme A synthetase gene of Saccharomyces cerevisiae. De Virgilio C; Bürckert N; Barth G; Neuhaus JM; Boller T; Wiemken A Yeast; 1992 Dec; 8(12):1043-51. PubMed ID: 1363452 [TBL] [Abstract][Full Text] [Related]
4. HXT5 expression is under control of STRE and HAP elements in the HXT5 promoter. Verwaal R; Arako M; Kapur R; Verkleij AJ; Verrips CT; Boonstra J Yeast; 2004 Jul; 21(9):747-57. PubMed ID: 15282798 [TBL] [Abstract][Full Text] [Related]
5. Regulation of pyruvate metabolism in chemostat cultures of Kluyveromyces lactis CBS 2359. Zeeman AM; Kuyper M; Pronk JT; van Dijken JP; Steensma HY Yeast; 2000 May; 16(7):611-20. PubMed ID: 10806423 [TBL] [Abstract][Full Text] [Related]
6. [Effect of acetyl-CoA synthase gene overexpression on physiological function of Saccharomyces cerevisiae]. Chen F; Zhou J; Shi Z; Liu L; Du G; Chen J Wei Sheng Wu Xue Bao; 2010 Sep; 50(9):1172-9. PubMed ID: 21090257 [TBL] [Abstract][Full Text] [Related]
7. Response to acetaldehyde stress in the yeast Saccharomyces cerevisiae involves a strain-dependent regulation of several ALD genes and is mediated by the general stress response pathway. Aranda A; del Olmo Ml Ml Yeast; 2003 Jun; 20(8):747-59. PubMed ID: 12794936 [TBL] [Abstract][Full Text] [Related]
8. A carbon-source-responsive element is required for regulation of the hypoxic ADP/ATP carrier (AAC3) isoform in Saccharomyces cerevisiae. Sokolíková B; Sabová L; Kissová I; Kolarov J Biochem J; 2000 Dec; 352 Pt 3(Pt 3):893-8. PubMed ID: 11104700 [TBL] [Abstract][Full Text] [Related]
9. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae. Cakir T; Kirdar B; Onsan ZI; Ulgen KO; Nielsen J BMC Syst Biol; 2007 Mar; 1():18. PubMed ID: 17408508 [TBL] [Abstract][Full Text] [Related]
10. Cat8 and Sip4 mediate regulated transcriptional activation of the yeast malate dehydrogenase gene MDH2 by three carbon source-responsive promoter elements. Roth S; Schüller HJ Yeast; 2001 Jan; 18(2):151-62. PubMed ID: 11169757 [TBL] [Abstract][Full Text] [Related]
11. Transcription patterns of PMA1 and PMA2 genes and activity of plasma membrane H+-ATPase in Saccharomyces cerevisiae during diauxic growth and stationary phase. Fernandes AR; Sá-Correia I Yeast; 2003 Feb; 20(3):207-19. PubMed ID: 12557274 [TBL] [Abstract][Full Text] [Related]
12. Contribution of the Saccharomyces cerevisiae transcriptional regulator Leu3p to physiology and gene expression in nitrogen- and carbon-limited chemostat cultures. Boer VM; Daran JM; Almering MJ; de Winde JH; Pronk JT FEMS Yeast Res; 2005 Jul; 5(10):885-97. PubMed ID: 15949974 [TBL] [Abstract][Full Text] [Related]
13. Catabolite repression mutants of Saccharomyces cerevisiae show altered fermentative metabolism as well as cell cycle behavior in glucose-limited chemostat cultures. Aon MA; Cortassa S Biotechnol Bioeng; 1998 Jul; 59(2):203-13. PubMed ID: 10099331 [TBL] [Abstract][Full Text] [Related]
14. Isolation of an acetyl-CoA synthetase gene (ZbACS2) from Zygosaccharomyces bailii. Rodrigues F; Zeeman AM; Cardoso H; Sousa MJ; Steensma HY; Côrte-Real M; Leão C Yeast; 2004 Mar; 21(4):325-31. PubMed ID: 15042592 [TBL] [Abstract][Full Text] [Related]
15. Regulation of glycolytic enzymes and the Crabtree effect in galactose-limited continuous cultures of Saccharomyces cerevisiae. Sierkstra LN; Nouwen NP; Verbakel JM; Verrips CT Yeast; 1993 Jul; 9(7):787-95. PubMed ID: 8368013 [TBL] [Abstract][Full Text] [Related]
16. Regulation of pyruvate carboxylase isozyme (PYC1, PYC2) gene expression in Saccharomyces cerevisiae during fermentative and nonfermentative growth. Brewster NK; Val DL; Walker ME; Wallace JC Arch Biochem Biophys; 1994 May; 311(1):62-71. PubMed ID: 8185321 [TBL] [Abstract][Full Text] [Related]
17. TCA cycle-independent acetate metabolism via the glyoxylate cycle in Saccharomyces cerevisiae. Lee YJ; Jang JW; Kim KJ; Maeng PJ Yeast; 2011 Feb; 28(2):153-66. PubMed ID: 21246628 [TBL] [Abstract][Full Text] [Related]
18. A novel cis-acting cysteine-responsive regulatory element of the gene for the high-affinity glutathione transporter of Saccharomyces cerevisiae. Miyake T; Kanayama M; Sammoto H; Ono B Mol Genet Genomics; 2002 Feb; 266(6):1004-11. PubMed ID: 11862495 [TBL] [Abstract][Full Text] [Related]
19. Systematic identification, classification, and characterization of the open reading frames which encode novel helicase-related proteins in Saccharomyces cerevisiae by gene disruption and Northern analysis. Shiratori A; Shibata T; Arisawa M; Hanaoka F; Murakami Y; Eki T Yeast; 1999 Feb; 15(3):219-53. PubMed ID: 10077188 [TBL] [Abstract][Full Text] [Related]
20. Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. Parrou JL; Enjalbert B; Plourde L; Bauche A; Gonzalez B; François J Yeast; 1999 Feb; 15(3):191-203. PubMed ID: 10077186 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]