These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 9778821)

  • 21. Large organic aerosols in a dynamic and continuous whole-body exposure chamber tested on humans and on a heated mannequin.
    Lundgren L; Skare L; Lidén C; Tornling G
    Ann Occup Hyg; 2006 Oct; 50(7):705-15. PubMed ID: 16777913
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of wood-dust aerosol size-distributions collected by air samplers.
    Harper M; Akbar MZ; Andrew ME
    J Environ Monit; 2004 Jan; 6(1):18-22. PubMed ID: 14737465
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Size distribution of chromate paint aerosol generated in a bench-scale spray booth.
    Sabty-Daily RA; Hinds WC; Froines JR
    Ann Occup Hyg; 2005 Jan; 49(1):33-45. PubMed ID: 15596421
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies.
    Brouwer DH; Gijsbers JH; Lurvink MW
    Ann Occup Hyg; 2004 Jul; 48(5):439-53. PubMed ID: 15240340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of portable, real-time dust monitors sampling actively, with size-selective adaptors, and passively.
    Thorpe A; Walsh PT
    Ann Occup Hyg; 2007 Nov; 51(8):679-91. PubMed ID: 18024485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of a high-volume portable bioaerosol sampler in laboratory and field environments.
    An HR; Mainelis G; Yao M
    Indoor Air; 2004 Dec; 14(6):385-93. PubMed ID: 15500631
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The adaptation of existing personal inhalable aerosol samplers for bioaerosol sampling.
    Kenny LC; Stancliffe JD; Crook B; Stagg S; Griffiths WD; Stewart IW; Futter SJ
    Am Ind Hyg Assoc J; 1998 Dec; 59(12):831-41. PubMed ID: 9866164
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of a tractor cab using real-time aerosol counting instrumentation.
    Hall RM; Heitbrink WA; Reed LD
    Appl Occup Environ Hyg; 2002 Jan; 17(1):47-54. PubMed ID: 11800406
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A two-stage cyclone using microcentrifuge tubes for personal bioaerosol sampling.
    Lindsley WG; Schmechel D; Chen BT
    J Environ Monit; 2006 Nov; 8(11):1136-42. PubMed ID: 17075620
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new approach for diffusive sampling based on SPME for occupational exposure assessment.
    Marín P; Periago JF; Prado C
    J Occup Environ Hyg; 2013; 10(3):132-42. PubMed ID: 23356408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Passive personal sampler for exposure to low concentration of volatile organic compounds].
    Xu D; Cui J; Wang B
    Wei Sheng Yan Jiu; 1999 Jul; 28(4):246-8. PubMed ID: 11938990
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of airborne trialkyl and triaryl organophosphates originating from hydraulic fluids by gas chromatography-mass spectrometry. Development of methodology for combined aerosol and vapor sampling.
    Solbu K; Thorud S; Hersson M; Ovrebø S; Ellingsen DG; Lundanes E; Molander P
    J Chromatogr A; 2007 Aug; 1161(1-2):275-83. PubMed ID: 17574560
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental methods to determine inhalability and personal sampler performance for aerosols in ultra-low windspeed environments.
    Schmees DK; Wu YH; Vincent JH
    J Environ Monit; 2008 Dec; 10(12):1426-36. PubMed ID: 19037484
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options.
    Woolfenden E
    J Chromatogr A; 2010 Apr; 1217(16):2674-84. PubMed ID: 20106481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Size distribution of airborne mist and endotoxin-containing particles in metalworking fluid environments.
    Wang H; Reponen T; Lee SA; White E; Grinshpun SA
    J Occup Environ Hyg; 2007 Mar; 4(3):157-65. PubMed ID: 17237021
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined scanning electron microscopy and image analysis to investigate airborne submicron particles: a comparison between personal samplers.
    Zamengo L; Barbiero N; Gregio M; Orrù G
    Chemosphere; 2009 Jul; 76(3):313-23. PubMed ID: 19398120
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Personal exposures to volatile organic compounds among outdoor and indoor workers in two Mexican cities.
    Tovalin-Ahumada H; Whitehead L
    Sci Total Environ; 2007 Apr; 376(1-3):60-71. PubMed ID: 17306862
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A modified Marple-type cascade impactor for assessing aerosol particle size distributions in workplaces.
    Wu YH; Vincent JH
    J Occup Environ Hyg; 2007 Oct; 4(10):798-807. PubMed ID: 17763071
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Particle size distribution and respiratory deposition estimates of beryllium aerosols in an extraction and processing plant.
    Thorat DD; Mahadevan TN; Ghosh DK
    AIHA J (Fairfax, Va); 2003; 64(4):522-7. PubMed ID: 12908869
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparison of X-ray fluorescence and wet chemical analysis of air filter samples from a scrap lead smelting operation.
    Harper M; Hallmark TS; Andrew ME; Bird AJ
    J Environ Monit; 2004 Oct; 6(10):819-26. PubMed ID: 15480496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.