BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 9779209)

  • 1. Correlation coefficient between intracranial and arterial pressures: a gauge of cerebral vascular dilation.
    Daley ML; Leffler CW
    Acta Neurochir Suppl; 1998; 71():285-8. PubMed ID: 9779209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mode changes of cerebrovascular pressure transmission induced by cerebral vasodilation.
    Daley ML; Pourcyrous M; Timmons SD; Leffler CW
    J Neurotrauma; 2007 Mar; 24(3):559-66. PubMed ID: 17402860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of loss of cerebral vascular tone by correlation of arterial and intracranial pressure signals.
    Daley ML; Pasupathy H; Griffith M; Robertson JT; Leffler CW
    IEEE Trans Biomed Eng; 1995 Apr; 42(4):420-4. PubMed ID: 7729842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ischemia on cerebral arteriolar dilation to arterial hypoxia in piglets.
    Bari F; Louis TM; Busija DW
    Stroke; 1998 Jan; 29(1):222-7; discussion 227-8. PubMed ID: 9445354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dexamethasone pretreatment attenuates cerebral vasodilative responses to hypercapnia and augments vasoconstrictive responses to hyperventilation in newborn pigs.
    Heinonen K; Fedinec A; Leffler CW
    Pediatr Res; 2003 Feb; 53(2):260-5. PubMed ID: 12538784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of critical closing pressure in the cerebral circulation as a measure of cerebrovascular tone.
    Richards HK; Czosnyka M; Pickard JD
    Acta Neurochir (Wien); 1999; 141(11):1221-7 discussion 1226-7. PubMed ID: 10592124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling modulation of intracranial pressure by variation of cerebral venous resistance induced by ventilation.
    Pasley RL; Leffler CW; Daley ML
    Ann Biomed Eng; 2003 Nov; 31(10):1238-45. PubMed ID: 14649497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebrovascular responses to therapeutic dose of indomethacin in newborn pigs.
    Pourcyrous M; Busija DW; Shibata M; Bada HS; Korones SB; Leffler CW
    Pediatr Res; 1999 Apr; 45(4 Pt 1):582-7. PubMed ID: 10203152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of acute controlled changes in end-tidal carbon dioxide on the diameter of the optic nerve sheath: a transorbital ultrasonographic study in healthy volunteers.
    Dinsmore M; Han JS; Fisher JA; Chan VW; Venkatraghavan L
    Anaesthesia; 2017 May; 72(5):618-623. PubMed ID: 28177116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An experimental study of cerebrovascular resistance, pressure transmission, and craniospinal compliance.
    Piper IR; Chan KH; Whittle IR; Miller JD
    Neurosurgery; 1993 May; 32(5):805-15; discussion 815-6. PubMed ID: 8492856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Permissive role of prostacyclin in cerebral vasodilation to hypercapnia in newborn pigs.
    Leffler CW; Mirro R; Pharris LJ; Shibata M
    Am J Physiol; 1994 Jul; 267(1 Pt 2):H285-91. PubMed ID: 7519407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship of pulsatile cerebrospinal fluid flow to cerebral blood flow and intracranial pressure: a new theoretical model.
    Bergsneider M; Alwan AA; Falkson L; Rubinstein EH
    Acta Neurochir Suppl; 1998; 71():266-8. PubMed ID: 9779203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association between arterial and intracranial pressures.
    Czosnyka M
    Br J Neurosurg; 2000 Apr; 14(2):127-8. PubMed ID: 10889884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebral vasomotor reactivity testing in head injury: the link between pressure and flow.
    Lang EW; Lagopoulos J; Griffith J; Yip K; Yam A; Mudaliar Y; Mehdorn HM; Dorsch NW
    J Neurol Neurosurg Psychiatry; 2003 Aug; 74(8):1053-9. PubMed ID: 12876233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional cerebral blood flow after a localized cerebral contusion in pigs.
    Madsen FF
    Acta Neurochir (Wien); 1990; 105(3-4):150-7. PubMed ID: 2125804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO2 and cerebral circulation in newborn pigs: cyclic nucleotides and prostanoids in vascular regulation.
    Parfenova H; Shibata M; Zuckerman S; Leffler CW
    Am J Physiol; 1994 Apr; 266(4 Pt 2):H1494-501. PubMed ID: 7514362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction among autoregulation, CO2 reactivity, and intracranial pressure: a mathematical model.
    Ursino M; Lodi CA
    Am J Physiol; 1998 May; 274(5):H1715-28. PubMed ID: 9612384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study.
    Ursino M; Giulioni M; Lodi CA
    J Neurosurg; 1998 Aug; 89(2):255-66. PubMed ID: 9688121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of arterial and venous pressure for volume regulation of an organ enclosed in a rigid compartment with application to the injured brain.
    Kongstad L; Grände PO
    Acta Anaesthesiol Scand; 1999 May; 43(5):501-8. PubMed ID: 10341996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathophysiology of the cerebral circulation.
    Ravussin P; Bracco D
    Acta Anaesthesiol Scand Suppl; 1997; 111():89-91. PubMed ID: 9420967
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.