BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 9779223)

  • 1. Hydrodynamic properties of hydrocephalus shunts.
    Czosnyka Z; Czosnyka M; Richards H; Pickard JD
    Acta Neurochir Suppl; 1998; 71():334-9. PubMed ID: 9779223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laboratory testing of hydrocephalus shunts -- conclusion of the U.K. Shunt evaluation programme.
    Czosnyka Z; Czosnyka M; Richards HK; Pickard JD
    Acta Neurochir (Wien); 2002 Jun; 144(6):525-38; discussion 538. PubMed ID: 12111485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Posture-related overdrainage: comparison of the performance of 10 hydrocephalus shunts in vitro.
    Czosnyka Z; Czosnyka M; Richards HK; Pickard JD
    Neurosurgery; 1998 Feb; 42(2):327-33; discussion 333-4. PubMed ID: 9482183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shunt testing in-vivo: a method based on the data from the UK shunt evaluation laboratory.
    Czosnyka ZH; Czosnyka M; Pickard JD
    Acta Neurochir Suppl; 2002; 81():27-30. PubMed ID: 12168323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Four-year experience with the routine use of the programmable Hakim valve in the management of children with hydrocephalus.
    Rohde V; Mayfrank L; Ramakers VT; Gilsbach JM
    Acta Neurochir (Wien); 1998; 140(11):1127-34. PubMed ID: 9870057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical evaluation of shunt implantations using Sophy programmable pressure valves: comparison with Codman-Hakim programmable valves.
    Katano H; Karasawa K; Sugiyama N; Yamashita N; Ohkura A; Kamiya K
    J Clin Neurosci; 2003 Sep; 10(5):557-61. PubMed ID: 12948459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An adjustable CSF shunt: advices for clinical use.
    Lundkvist B; Eklund A; Koskinen LO; Malm J
    Acta Neurol Scand; 2003 Jul; 108(1):38-42. PubMed ID: 12807391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcutaneous pressure-adjustable valves and magnetic resonance imaging: an ex vivo examination of the Codman-Medos programmable valve and the Sophy adjustable pressure valve.
    Ortler M; Kostron H; Felber S
    Neurosurgery; 1997 May; 40(5):1050-7; discussion 1057-8. PubMed ID: 9149264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overdrainage and shunt technology. A critical comparison of programmable, hydrostatic and variable-resistance valves and flow-reducing devices.
    Aschoff A; Kremer P; Benesch C; Fruh K; Klank A; Kunze S
    Childs Nerv Syst; 1995 Apr; 11(4):193-202. PubMed ID: 7621479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic properties of hydrocephalus shunts: United Kingdom Shunt Evaluation Laboratory.
    Czosnyka M; Czosnyka Z; Whitehouse H; Pickard JD
    J Neurol Neurosurg Psychiatry; 1997 Jan; 62(1):43-50. PubMed ID: 9010399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A randomized, controlled study of a programmable shunt valve versus a conventional valve for patients with hydrocephalus. Hakim-Medos Investigator Group.
    Pollack IF; Albright AL; Adelson PD
    Neurosurgery; 1999 Dec; 45(6):1399-408; discussion 1408-11. PubMed ID: 10598708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of 3-tesla magnetic resonance imaging on various pressure programmable shunt valves.
    Inoue T; Kuzu Y; Ogasawara K; Ogawa A
    J Neurosurg; 2005 Aug; 103(2 Suppl):163-5. PubMed ID: 16370283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Posture-independent piston valve: a novel valve mechanism that actuates based on intracranial pressure alone.
    Medow JE; Luzzio CC
    J Neurosurg Pediatr; 2012 Jan; 9(1):64-8. PubMed ID: 22208323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Telemetric assessment of intracranial pressure changes consequent to manipulations of the Codman-Medos programmable shunt valve.
    Frim DM; Lathrop D
    Pediatr Neurosurg; 2000 Nov; 33(5):237-242. PubMed ID: 11155059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebrospinal fluid shunt dynamics in patients with idiopathic adult hydrocephalus syndrome.
    Malm J; Kristensen B; Fagerlund M; Koskinen LO; Ekstedt J
    J Neurol Neurosurg Psychiatry; 1995 Jun; 58(6):715-23. PubMed ID: 7608674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency and causes of shunt revisions in different cerebrospinal fluid shunt types.
    Borgbjerg BM; Gjerris F; Albeck MJ; Hauerberg J; Børgesen SE
    Acta Neurochir (Wien); 1995; 136(3-4):189-94. PubMed ID: 8748853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The programmable shunt-system Codman Medos Hakim: A clinical observation study and review of literature.
    Nowak S; Mehdorn HM; Stark A
    Clin Neurol Neurosurg; 2018 Oct; 173():154-158. PubMed ID: 30142621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluid flow performance of a new siphon-control device for ventricular shunts.
    Horton D; Pollay M
    J Neurosurg; 1990 Jun; 72(6):926-32. PubMed ID: 2338577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A clinical survey of hydrocephalus and current treatment for hydrocephalus in Japan: analysis by nationwide questionnaire.
    Miyake H; Ohta T; Kajimoto Y; Ogawa D
    Childs Nerv Syst; 1999 Aug; 15(8):363-8. PubMed ID: 10447603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CSF outflow resistance as predictor of shunt function. A long-term study.
    Malm J; Lundkvist B; Eklund A; Koskinen LO; Kristensen B
    Acta Neurol Scand; 2004 Sep; 110(3):154-60. PubMed ID: 15285771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.