These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 9779230)
21. PROSAIKA: a prospective multicenter registry with the first programmable gravitational device for hydrocephalus shunting. Kehler U; Kiefer M; Eymann R; Wagner W; Tschan CA; Langer N; Rohde V; Ludwig HC; Gliemroth J; Meier U; Lemcke J; Thomale UW; Fritsch M; Krauss JK; Mirzayan MJ; Schuhmann M; Huthmann A Clin Neurol Neurosurg; 2015 Oct; 137():132-6. PubMed ID: 26196478 [TBL] [Abstract][Full Text] [Related]
22. Rationale and methodology of the multicenter pediatric cerebrospinal fluid shunt design trial. Pediatric Hydrocephalus Treatment Evaluation Group. Drake JM; Kestle J Childs Nerv Syst; 1996 Aug; 12(8):434-47. PubMed ID: 8891361 [TBL] [Abstract][Full Text] [Related]
23. Posture related in-vitro characterization of a flow regulated MEMS CSF valve. Tachatos N; Chappel E; Dumont-Fillon D; Meboldt M; Daners MS Biomed Microdevices; 2020 Feb; 22(1):21. PubMed ID: 32088807 [TBL] [Abstract][Full Text] [Related]
24. Shunt assistant valve: bench test investigations and clinical performance. Tokoro K; Suzuki S; Chiba Y; Tsuda M Childs Nerv Syst; 2002 Oct; 18(9-10):492-9. PubMed ID: 12382174 [TBL] [Abstract][Full Text] [Related]
25. Comparison of anti-siphon devices-how do they affect CSF dynamics in supine and upright posture? Gehlen M; Eklund A; Kurtcuoglu V; Malm J; Schmid Daners M Acta Neurochir (Wien); 2017 Aug; 159(8):1389-1397. PubMed ID: 28660395 [TBL] [Abstract][Full Text] [Related]
26. Experiences with flow-regulated shunts (Orbis-Sigma valves) in cases of difficulty in managing hydrocephalus in children. Serlo W Childs Nerv Syst; 1995 Mar; 11(3):166-9. PubMed ID: 7773977 [TBL] [Abstract][Full Text] [Related]
27. Four-year experience with the routine use of the programmable Hakim valve in the management of children with hydrocephalus. Rohde V; Mayfrank L; Ramakers VT; Gilsbach JM Acta Neurochir (Wien); 1998; 140(11):1127-34. PubMed ID: 9870057 [TBL] [Abstract][Full Text] [Related]
28. Shunting with gravitational valves--can adjustments end the era of revisions for overdrainage-related events?: clinical article. Freimann FB; Sprung C J Neurosurg; 2012 Dec; 117(6):1197-204. PubMed ID: 22998061 [TBL] [Abstract][Full Text] [Related]
29. [Clinical experience with the Sp[hy adjustable valve in the treatment of adult hydrocephalus. A series of 147 cases]. Bret P; Guyotat J; Ricci AC; Mottolese C; Jouanneau E Neurochirurgie; 1999 May; 45(2):98-108; discussion 108-9. PubMed ID: 10448649 [TBL] [Abstract][Full Text] [Related]
30. Optimum position for an anti-siphon device in a cerebrospinal fluid shunt system. Tokoro K; Chiba Y Neurosurgery; 1991 Oct; 29(4):519-25. PubMed ID: 1658677 [TBL] [Abstract][Full Text] [Related]
31. Risks of using siphon-reducing devices. Kremer P; Aschoff A; Kunze S Childs Nerv Syst; 1994 May; 10(4):231-5. PubMed ID: 7923232 [TBL] [Abstract][Full Text] [Related]
32. [Gravity valves for idiopathic normal pressure hydrocephalus. A Prospective study of 60 patients]. Meier U Nervenarzt; 2004 Jun; 75(6):577-83. PubMed ID: 15156286 [TBL] [Abstract][Full Text] [Related]
33. The use of the Codman-Medos Programmable Hakim valve in the management of patients with hydrocephalus: illustrative cases. Black PM; Hakim R; Bailey NO Neurosurgery; 1994 Jun; 34(6):1110-3. PubMed ID: 8084404 [TBL] [Abstract][Full Text] [Related]
34. Hydrocephalus: the zero ICP ventricle shunt (ZIPS) to control gravity shunt flow. A clinical study in 56 patients. Foltz EL; Blanks J; Meyer R Childs Nerv Syst; 1994 Jan; 10(1):43-8. PubMed ID: 8194062 [TBL] [Abstract][Full Text] [Related]
35. [Significance of hydrostatic valves in therapy of chronic hydrocephalus]. Kiefer M; Eymann R; MascarĂ³s V; Walter M; Steudel WI Nervenarzt; 2000 Dec; 71(12):975-86. PubMed ID: 11139994 [TBL] [Abstract][Full Text] [Related]
36. Overdrainage and shunt technology. A critical comparison of programmable, hydrostatic and variable-resistance valves and flow-reducing devices. Aschoff A; Kremer P; Benesch C; Fruh K; Klank A; Kunze S Childs Nerv Syst; 1995 Apr; 11(4):193-202. PubMed ID: 7621479 [TBL] [Abstract][Full Text] [Related]
37. Gravitational shunt units may cause under-drainage in bedridden patients. Kaestner S; Kruschat T; Nitzsche N; Deinsberger W Acta Neurochir (Wien); 2009 Mar; 151(3):217-21; discussion 221. PubMed ID: 19238319 [TBL] [Abstract][Full Text] [Related]
38. CSF outflow resistance as predictor of shunt function. A long-term study. Malm J; Lundkvist B; Eklund A; Koskinen LO; Kristensen B Acta Neurol Scand; 2004 Sep; 110(3):154-60. PubMed ID: 15285771 [TBL] [Abstract][Full Text] [Related]
39. A theoretical study of new types of valve shunts for cerebrospinal fluid. Bosio A ASAIO Trans; 1991; 37(3):M289-90. PubMed ID: 1751154 [TBL] [Abstract][Full Text] [Related]
40. Change in ventricular size and effect of ventricular catheter placement in pediatric patients with shunted hydrocephalus. Tuli S; O'Hayon B; Drake J; Clarke M; Kestle J Neurosurgery; 1999 Dec; 45(6):1329-33; discussion 1333-5. PubMed ID: 10598700 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]