These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 9779446)

  • 1. Analysis of neurotransmitter transport into secretory vesicles.
    Finn JP; Merickel A; Edwards RH
    Methods Enzymol; 1998; 296():144-62. PubMed ID: 9779446
    [No Abstract]   [Full Text] [Related]  

  • 2. Functional identification of vesicular monoamine and acetylcholine transporters.
    Varoqui H; Erickson JD
    Methods Enzymol; 1998; 296():84-99. PubMed ID: 9779442
    [No Abstract]   [Full Text] [Related]  

  • 3. Imaging of monoaminergic and cholinergic vesicular transporters in the brain.
    Frey KA; Wieland DM; Kilbourn MR
    Adv Pharmacol; 1998; 42():269-72. PubMed ID: 9327896
    [No Abstract]   [Full Text] [Related]  

  • 4. The vesicular monoamine transporter VMAT2 and vesicular acetylcholine transporter VAChT are sorted to separate vesicle populations in PC12 cells.
    Tao-Cheng JH; Eiden LE
    Adv Pharmacol; 1998; 42():250-3. PubMed ID: 9327891
    [No Abstract]   [Full Text] [Related]  

  • 5. Active transport of acetylcholine by the human vesicular acetylcholine transporter.
    Varoqui H; Erickson JD
    J Biol Chem; 1996 Nov; 271(44):27229-32. PubMed ID: 8910293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A phosphorylation site regulates sorting of the vesicular acetylcholine transporter to dense core vesicles.
    Krantz DE; Waites C; Oorschot V; Liu Y; Wilson RI; Tan PK; Klumperman J; Edwards RH
    J Cell Biol; 2000 Apr; 149(2):379-96. PubMed ID: 10769030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential localization of vesicular acetylcholine and monoamine transporters in PC12 cells but not CHO cells.
    Liu Y; Edwards RH
    J Cell Biol; 1997 Nov; 139(4):907-16. PubMed ID: 9362509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Caenorhabditis elegans to study vesicular transport.
    Rand JB; Duerr JS; Frisby DL
    Methods Enzymol; 1998; 296():529-47. PubMed ID: 9779472
    [No Abstract]   [Full Text] [Related]  

  • 9. Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. I. Central nervous system.
    Schäfer MK; Eiden LE; Weihe E
    Neuroscience; 1998 May; 84(2):331-59. PubMed ID: 9539209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acetylcholine transporter--vesamicol receptor pharmacology and structure.
    Parsons SM; Bahr BA; Rogers GA; Clarkson ED; Noremberg K; Hicks BW
    Prog Brain Res; 1993; 98():175-81. PubMed ID: 8248506
    [No Abstract]   [Full Text] [Related]  

  • 11. Purification of vesicular monoamine transporters: from classical techniques to histidine tags.
    Yelin R; Schuldiner S
    Methods Enzymol; 1998; 296():64-72. PubMed ID: 9779440
    [No Abstract]   [Full Text] [Related]  

  • 12. Photoaffinity labeling of vesicular acetylcholine transporter from electric organ of Torpedo.
    Parsons SM; Rogers GA; Gracz LM
    Methods Enzymol; 1998; 296():99-116. PubMed ID: 9779443
    [No Abstract]   [Full Text] [Related]  

  • 13. Selective labeling of neurotransmitter transporters at the cell surface.
    Daniels GM; Amara SG
    Methods Enzymol; 1998; 296():307-18. PubMed ID: 9779457
    [No Abstract]   [Full Text] [Related]  

  • 14. Dissociation of the vesicular acetylcholine transporter domains important for high-affinity transport recognition, binding of vesamicol and targeting to synaptic vesicles.
    Varoqui H; Erickson JD
    J Physiol Paris; 1998 Apr; 92(2):141-4. PubMed ID: 9782458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylcholine release. Reconstitution of the elementary quantal mechanism.
    Israël M; Dunant Y
    J Physiol Paris; 1998 Apr; 92(2):123-8. PubMed ID: 9782455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A kinetic and allosteric model for the acetylcholine transporter-vesamicol receptor in synaptic vesicles.
    Bahr BA; Clarkson ED; Rogers GA; Noremberg K; Parsons SM
    Biochemistry; 1992 Jun; 31(25):5752-62. PubMed ID: 1319200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of protons with the acetylcholine transporter of synaptic vesicles.
    Nguyen ML; Parsons SM
    Prog Brain Res; 1996; 109():97-103. PubMed ID: 9009696
    [No Abstract]   [Full Text] [Related]  

  • 18. N-hydroxyalkyl derivatives of 3 beta-phenyltropane and 1-methylspiro[1H-indoline-3,4'-piperidine]: vesamicol analogues with affinity for monoamine transporters.
    Efange SM; Kamath AP; Khare AB; Kung MP; Mach RH; Parsons SM
    J Med Chem; 1997 Nov; 40(24):3905-14. PubMed ID: 9397171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evoked acetylcholine release by immortalized brain endothelial cells genetically modified to express choline acetyltransferase and/or the vesicular acetylcholine transporter.
    Malo M; Diebler MF; Prado de Carvalho L; Meunier FM; Dunant Y; Bloc A; Stinnakre J; Tomasi M; Tchélingérian J; Couraud PO; Israël M
    J Neurochem; 1999 Oct; 73(4):1483-91. PubMed ID: 10501193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of the rat vesicular acetylcholine transporter.
    Cho GW; Kim MH; Chai YG; Gilmor ML; Levey AI; Hersh LB
    J Biol Chem; 2000 Jun; 275(26):19942-8. PubMed ID: 10748073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.