These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 9779525)
1. Importance of the intersegmental trunk muscles for the stability of the lumbar spine. A biomechanical study in vitro. Quint U; Wilke HJ; Shirazi-Adl A; Parnianpour M; Löer F; Claes LE Spine (Phila Pa 1976); 1998 Sep; 23(18):1937-45. PubMed ID: 9779525 [TBL] [Abstract][Full Text] [Related]
2. Stability increase of the lumbar spine with different muscle groups. A biomechanical in vitro study. Wilke HJ; Wolf S; Claes LE; Arand M; Wiesend A Spine (Phila Pa 1976); 1995 Jan; 20(2):192-8. PubMed ID: 7716624 [TBL] [Abstract][Full Text] [Related]
3. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine. Harris BM; Hilibrand AS; Savas PE; Pellegrino A; Vaccaro AR; Siegler S; Albert TJ Spine (Phila Pa 1976); 2004 Feb; 29(4):E65-70. PubMed ID: 15094547 [TBL] [Abstract][Full Text] [Related]
4. Stability of the whole lumbar spine after multilevel fenestration and discectomy. Lu WW; Luk KD; Ruan DK; Fei ZQ; Leong JC Spine (Phila Pa 1976); 1999 Jul; 24(13):1277-82. PubMed ID: 10404567 [TBL] [Abstract][Full Text] [Related]
5. Stabilizing function of trunk flexor-extensor muscles around a neutral spine posture. Cholewicki J; Panjabi MM; Khachatryan A Spine (Phila Pa 1976); 1997 Oct; 22(19):2207-12. PubMed ID: 9346140 [TBL] [Abstract][Full Text] [Related]
6. Biomechanical comparison of single-level posterior versus transforaminal lumbar interbody fusions with bilateral pedicle screw fixation: segmental stability and the effects on adjacent motion segments. Sim HB; Murovic JA; Cho BY; Lim TJ; Park J J Neurosurg Spine; 2010 Jun; 12(6):700-8. PubMed ID: 20515358 [TBL] [Abstract][Full Text] [Related]
7. Biomechanical evaluation of the kinematics of the cadaver lumbar spine following disc replacement with the ProDisc-L prosthesis. Demetropoulos CK; Sengupta DK; Knaub MA; Wiater BP; Abjornson C; Truumees E; Herkowitz HN Spine (Phila Pa 1976); 2010 Jan; 35(1):26-31. PubMed ID: 20042953 [TBL] [Abstract][Full Text] [Related]
9. Morphologic changes in the lumbar intervertebral foramen due to flexion-extension, lateral bending, and axial rotation: an in vitro anatomic and biomechanical study. Fujiwara A; An HS; Lim TH; Haughton VM Spine (Phila Pa 1976); 2001 Apr; 26(8):876-82. PubMed ID: 11317109 [TBL] [Abstract][Full Text] [Related]
10. Laminectomy and functional impairment of the lumbar spine: the importance of muscle forces in flexible and rigid instrumented stabilization--a biomechanical study in vitro. Quint U; Wilke HJ; Löer F; Claes L Eur Spine J; 1998; 7(3):229-38. PubMed ID: 9684957 [TBL] [Abstract][Full Text] [Related]
11. Biomechanical properties of threaded inserts for lumbar interbody spinal fusion. Tencer AF; Hampton D; Eddy S Spine (Phila Pa 1976); 1995 Nov; 20(22):2408-14. PubMed ID: 8578391 [TBL] [Abstract][Full Text] [Related]
12. The effects of abdominal muscle coactivation on lumbar spine stability. Gardner-Morse MG; Stokes IA Spine (Phila Pa 1976); 1998 Jan; 23(1):86-91; discussion 91-2. PubMed ID: 9460158 [TBL] [Abstract][Full Text] [Related]
13. Biomechanical evaluation of translaminar facet joint fixation. A comparative study of poly-L-lactide pins, screws, and pedicle fixation. Deguchi M; Cheng BC; Sato K; Matsuyama Y; Zdeblick TA Spine (Phila Pa 1976); 1998 Jun; 23(12):1307-12; discussion 1313. PubMed ID: 9654619 [TBL] [Abstract][Full Text] [Related]
14. Midlumbar lateral flexion stability measured in healthy volunteers by in vivo fluoroscopy. Mellor FE; Muggleton JM; Bagust J; Mason W; Thomas PW; Breen AC Spine (Phila Pa 1976); 2009 Oct; 34(22):E811-7. PubMed ID: 19829245 [TBL] [Abstract][Full Text] [Related]
15. Segmental motion adjacent to an instrumented lumbar fusion: the effect of extension of fusion to the sacrum. Untch C; Liu Q; Hart R Spine (Phila Pa 1976); 2004 Nov; 29(21):2376-81. PubMed ID: 15507798 [TBL] [Abstract][Full Text] [Related]
16. Spinal instrumentation after complete resection of the last lumbar vertebra: an in vitro biomechanical study after L5 spondylectomy. Bartanusz V; Muzumdar A; Hussain M; Moldavsky M; Bucklen B; Khalil S Spine (Phila Pa 1976); 2011 Jun; 36(13):1017-21. PubMed ID: 21224772 [TBL] [Abstract][Full Text] [Related]
17. Influence of spinal disc translational stiffness on the lumbar spinal loads, ligament forces and trunk muscle forces during upper body inclination. Arshad R; Zander T; Bashkuev M; Schmidt H Med Eng Phys; 2017 Aug; 46():54-62. PubMed ID: 28666589 [TBL] [Abstract][Full Text] [Related]
18. The Effects of Orientation of Lumbar Facet Joints on the Facet Joint Contact Forces: An In Vitro Biomechanical Study. Liu X; Huang Z; Zhou R; Zhu Q; Ji W; Long Y; Wang J Spine (Phila Pa 1976); 2018 Feb; 43(4):E216-E220. PubMed ID: 28759478 [TBL] [Abstract][Full Text] [Related]
19. Validation of lumbar spine loading from a musculoskeletal model including the lower limbs and lumbar spine. Actis JA; Honegger JD; Gates DH; Petrella AJ; Nolasco LA; Silverman AK J Biomech; 2018 Feb; 68():107-114. PubMed ID: 29310946 [TBL] [Abstract][Full Text] [Related]
20. Robotic application of a dynamic resultant force vector using real-time load-control: simulation of an ideal follower load on Cadaveric L4-L5 segments. Bennett CR; Kelly BP J Biomech; 2013 Aug; 46(12):2087-92. PubMed ID: 23809771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]