These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 9779891)

  • 41. The context-tree kernel for strings.
    Cuturi M; Vert JP
    Neural Netw; 2005 Oct; 18(8):1111-23. PubMed ID: 16198086
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improving Bayesian credibility intervals for classifier error rates using maximum entropy empirical priors.
    Gustafsson MG; Wallman M; Wickenberg Bolin U; Göransson H; Fryknäs M; Andersson CR; Isaksson A
    Artif Intell Med; 2010 Jun; 49(2):93-104. PubMed ID: 20347582
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Uncertainty-aware skin cancer detection: The element of doubt.
    Tabarisaadi P; Khosravi A; Nahavandi S
    Comput Biol Med; 2022 May; 144():105357. PubMed ID: 35259615
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Automated diagnosis of melanoma.
    Janda M; Soyer HP
    Med J Aust; 2017 Oct; 207(8):361-362. PubMed ID: 29020911
    [No Abstract]   [Full Text] [Related]  

  • 45. Diagnostic and neural analysis of skin cancer (DANAOS). A multicentre study for collection and computer-aided analysis of data from pigmented skin lesions using digital dermoscopy.
    Hoffmann K; Gambichler T; Rick A; Kreutz M; Anschuetz M; Grünendick T; Orlikov A; Gehlen S; Perotti R; Andreassi L; Newton Bishop J; Césarini JP; Fischer T; Frosch PJ; Lindskov R; Mackie R; Nashan D; Sommer A; Neumann M; Ortonne JP; Bahadoran P; Penas PF; Zoras U; Altmeyer P
    Br J Dermatol; 2003 Oct; 149(4):801-9. PubMed ID: 14616373
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Bayesian connectivity-based approach to constructing probabilistic gene regulatory networks.
    Zhou X; Wang X; Pal R; Ivanov I; Bittner M; Dougherty ER
    Bioinformatics; 2004 Nov; 20(17):2918-27. PubMed ID: 15145802
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bottom-up learning of explicit knowledge using a Bayesian algorithm and a new Hebbian learning rule.
    Hélie S; Proulx R; Lefebvre B
    Neural Netw; 2011 Apr; 24(3):219-32. PubMed ID: 21239141
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bayesian networks in biomedicine and health-care.
    Lucas PJ; van der Gaag LC; Abu-Hanna A
    Artif Intell Med; 2004 Mar; 30(3):201-14. PubMed ID: 15081072
    [No Abstract]   [Full Text] [Related]  

  • 49. Incorporating expert knowledge when learning Bayesian network structure: a medical case study.
    Julia Flores M; Nicholson AE; Brunskill A; Korb KB; Mascaro S
    Artif Intell Med; 2011 Nov; 53(3):181-204. PubMed ID: 21958683
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Automatic Classification of Specific Melanocytic Lesions Using Artificial Intelligence.
    Jaworek-Korjakowska J; Kłeczek P
    Biomed Res Int; 2016; 2016():8934242. PubMed ID: 26885520
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Algorithms for Bayesian belief-network precomputation.
    Herskovits EH; Cooper GF
    Methods Inf Med; 1991 Apr; 30(2):81-9. PubMed ID: 1857253
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bayesian belief network analysis applied to determine the progression of temporomandibular disorders using MRI.
    Iwasaki H
    Dentomaxillofac Radiol; 2015; 44(4):20140279. PubMed ID: 25472616
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structure learning for Bayesian networks as models of biological networks.
    Larjo A; Shmulevich I; Lähdesmäki H
    Methods Mol Biol; 2013; 939():35-45. PubMed ID: 23192539
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Patient age in Spitz nevus and malignant melanoma: implication of Bayes rule for differential diagnosis.
    Vollmer RT
    Am J Clin Pathol; 2004 Jun; 121(6):872-7. PubMed ID: 15198360
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A comparison of methods for assessing penetrating trauma on retrospective multi-center data.
    Ahmed BA; Matheny ME; Rice PL; Clarke JR; Ogunyemi OI
    J Biomed Inform; 2009 Apr; 42(2):308-16. PubMed ID: 18929685
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Artificial neural networks from MATLAB in medicinal chemistry. Bayesian-regularized genetic neural networks (BRGNN): application to the prediction of the antagonistic activity against human platelet thrombin receptor (PAR-1).
    Caballero J; Fernández M
    Curr Top Med Chem; 2008; 8(18):1580-605. PubMed ID: 19075769
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Discovering novel causal patterns from biomedical natural-language texts using Bayesian nets.
    Atkinson J; Rivas A
    IEEE Trans Inf Technol Biomed; 2008 Nov; 12(6):714-22. PubMed ID: 19000950
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A novel algorithm for scalable and accurate Bayesian network learning.
    Brown LE; Tsamardinos I; Aliferis CF
    Stud Health Technol Inform; 2004; 107(Pt 1):711-5. PubMed ID: 15360905
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Determining the asymmetry of skin lesion with fuzzy borders.
    Ng VT; Fung BY; Lee TK
    Comput Biol Med; 2005 Feb; 35(2):103-20. PubMed ID: 15567181
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Using literature and data to learn Bayesian networks as clinical models of ovarian tumors.
    Antal P; Fannes G; Timmerman D; Moreau Y; De Moor B
    Artif Intell Med; 2004 Mar; 30(3):257-81. PubMed ID: 15081075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.