These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 9779922)
1. An early stage mechanism of the age-associated mitochondrial dysfunction in the brain of SAMP8 mice; an age-associated neurodegeneration animal model. Nishikawa T; Takahashi JA; Fujibayashi Y; Fujisawa H; Zhu B; Nishimura Y; Ohnishi K; Higuchi K; Hashimoto N; Hosokawa M Neurosci Lett; 1998 Sep; 254(2):69-72. PubMed ID: 9779922 [TBL] [Abstract][Full Text] [Related]
2. Mitochondria-selective reduction of 62Cu-pyruvaldehyde bis(N4-methylthiosemicarbazone) (62Cu-PTSM) in the murine brain; a novel radiopharmaceutical for brain positron emission tomography (PET) imaging. Fujibayashi Y; Wada K; Taniuchi H; Yonekura Y; Konishi J; Yokoyama A Biol Pharm Bull; 1993 Feb; 16(2):146-9. PubMed ID: 8395929 [TBL] [Abstract][Full Text] [Related]
3. Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) (Cu-PTSM), a metal complex with selective NADH-dependent reduction by complex I in brain mitochondria: a potential radiopharmaceutical for mitochondria-functional imaging with positron emission tomography (PET). Taniuchi H; Fujibayashi Y; Okazawa H; Yonekura Y; Konishi J; Yokoyama A Biol Pharm Bull; 1995 Aug; 18(8):1126-9. PubMed ID: 8535408 [TBL] [Abstract][Full Text] [Related]
4. Acutely administered melatonin restores hepatic mitochondrial physiology in old mice. Okatani Y; Wakatsuki A; Reiter RJ; Miyahara Y Int J Biochem Cell Biol; 2003 Mar; 35(3):367-75. PubMed ID: 12531250 [TBL] [Abstract][Full Text] [Related]
5. Cytosolic/microsomal redox pathway: a reductive retention mechanism of a PET-oncology tracer, cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) (cu-PTSM). Shibuya K; Fujibayashi Y; Yoshimi E; Sasai K; Hiraoka M; Welch MJ Ann Nucl Med; 1999 Oct; 13(5):287-92. PubMed ID: 10582796 [TBL] [Abstract][Full Text] [Related]
6. Curcumin prevents mitochondrial dysfunction in the brain of the senescence-accelerated mouse-prone 8. Eckert GP; Schiborr C; Hagl S; Abdel-Kader R; Müller WE; Rimbach G; Frank J Neurochem Int; 2013 Apr; 62(5):595-602. PubMed ID: 23422877 [TBL] [Abstract][Full Text] [Related]
7. Differential mechanism of retention of Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) (Cu-PTSM) by brain and tumor: a novel radiopharmaceutical for positron emission tomography imaging. Fujibayashi Y; Taniuchi H; Wada K; Yonekura Y; Konishi J; Yokoyama A Ann Nucl Med; 1995 Feb; 9(1):1-5. PubMed ID: 7779524 [TBL] [Abstract][Full Text] [Related]
8. Mitochondrial dysfunction in the senescence accelerated mouse (SAM). Nakahara H; Kanno T; Inai Y; Utsumi K; Hiramatsu M; Mori A; Packer L Free Radic Biol Med; 1998 Jan; 24(1):85-92. PubMed ID: 9436617 [TBL] [Abstract][Full Text] [Related]
9. Age-related changes in energy production in fresh senescence-accelerated mouse brain slices as revealed by positron autoradiography. Omata N; Murata T; Fujibayashi Y; Waki A; Sadato N; Yoshimoto M; Wada Y; Yonekura Y Dement Geriatr Cogn Disord; 2001; 12(2):78-84. PubMed ID: 11173878 [TBL] [Abstract][Full Text] [Related]
10. Reduced apurinic/apyrimidinic endonuclease 1 activity and increased DNA damage in mitochondria are related to enhanced apoptosis and inflammation in the brain of senescence- accelerated P8 mice (SAMP8). Torregrosa-Muñumer R; Gómez A; Vara E; Kireev R; Barja G; Tresguerres JA; Gredilla R Biogerontology; 2016 Apr; 17(2):325-35. PubMed ID: 26415859 [TBL] [Abstract][Full Text] [Related]
11. Hepatic mitochondrial dysfunction in senescence-accelerated mice: correction by long-term, orally administered physiological levels of melatonin. Okatani Y; Wakatsuki A; Reiter RJ; Miyahara Y J Pineal Res; 2002 Oct; 33(3):127-33. PubMed ID: 12220325 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the expression of endogenous murine leukemia viruses in the brains of senescence-accelerated mice (SAMP8) and the relationship between expression and brain histopathology. Jeong BH; Jin JK; Choi EK; Lee EY; Meeker HC; Kozak CA; Carp RI; Kim YS J Neuropathol Exp Neurol; 2002 Nov; 61(11):1001-12. PubMed ID: 12430717 [TBL] [Abstract][Full Text] [Related]
15. Free radical oxidation of brain proteins in accelerated senescence and its modulation by N-tert-butyl-alpha-phenylnitrone. Butterfield DA; Howard BJ; Yatin S; Allen KL; Carney JM Proc Natl Acad Sci U S A; 1997 Jan; 94(2):674-8. PubMed ID: 9012843 [TBL] [Abstract][Full Text] [Related]
16. Expression of neurotrophin genes in the brain of senescence-accelerated mouse (SAM) during postnatal development. Kaisho Y; Miyamoto M; Shiho O; Onoue H; Kitamura Y; Nomura S Brain Res; 1994 May; 647(1):139-44. PubMed ID: 8069696 [TBL] [Abstract][Full Text] [Related]
17. Dysfunction of astrocytes in senescence-accelerated mice SAMP8 reduces their neuroprotective capacity. García-Matas S; Gutierrez-Cuesta J; Coto-Montes A; Rubio-Acero R; Díez-Vives C; Camins A; Pallàs M; Sanfeliu C; Cristòfol R Aging Cell; 2008 Oct; 7(5):630-40. PubMed ID: 18616637 [TBL] [Abstract][Full Text] [Related]
18. Kainate-induced mitochondrial oxidative stress contributes to hippocampal degeneration in senescence-accelerated mice. Shin EJ; Jeong JH; Bing G; Park ES; Chae JS; Yen TP; Kim WK; Wie MB; Jung BD; Kim HJ; Lee SY; Kim HC Cell Signal; 2008 Apr; 20(4):645-58. PubMed ID: 18248956 [TBL] [Abstract][Full Text] [Related]
19. Copper-trafficking efficacy of copper-pyruvaldehyde bis(N4- methylthiosemicarbazone) on the macular mouse, an animal model of Menkes disease. Munakata M; Kodama H; Fujisawa C; Hiroki T; Kimura K; Watanabe M; Nishikawa M; Tsuchiya S Pediatr Res; 2012 Sep; 72(3):270-6. PubMed ID: 22728746 [TBL] [Abstract][Full Text] [Related]
20. Improved mitochondrial function and increased life span after chronic melatonin treatment in senescent prone mice. Rodríguez MI; Escames G; López LC; López A; García JA; Ortiz F; Sánchez V; Romeu M; Acuña-Castroviejo D Exp Gerontol; 2008 Aug; 43(8):749-56. PubMed ID: 18485648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]