These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 9779922)
21. Neurons from senescence-accelerated SAMP8 mice are protected against frailty by the sirtuin 1 promoting agents melatonin and resveratrol. Cristòfol R; Porquet D; Corpas R; Coto-Montes A; Serret J; Camins A; Pallàs M; Sanfeliu C J Pineal Res; 2012 Apr; 52(3):271-81. PubMed ID: 22085194 [TBL] [Abstract][Full Text] [Related]
22. Increased expression of cathepsins E and D in reactive microglial cells associated with spongiform degeneration in the brain stem of senescence-accelerated mouse. Amano T; Nakanishi H; Oka M; Yamamoto K Exp Neurol; 1995 Dec; 136(2):171-82. PubMed ID: 7498407 [TBL] [Abstract][Full Text] [Related]
23. Favorable effects of a prolonged treatment with melatonin on the level of oxidative damage and neurodegeneration in senescence-accelerated mice. Caballero B; Vega-Naredo I; Sierra V; Huidobro-Fernández C; Soria-Valles C; De Gonzalo-Calvo D; Tolivia D; Gutierrez-Cuesta J; Pallas M; Camins A; Rodríguez-Colunga MJ; Coto-Montes A J Pineal Res; 2008 Oct; 45(3):302-11. PubMed ID: 18410310 [TBL] [Abstract][Full Text] [Related]
24. Mitochondrial dysfunction in platelets and hippocampi of senescence-accelerated mice. Xu J; Shi C; Li Q; Wu J; Forster EL; Yew DT J Bioenerg Biomembr; 2007 Apr; 39(2):195-202. PubMed ID: 17436064 [TBL] [Abstract][Full Text] [Related]
25. Cholinesterase activity in brain of senescence-accelerated-resistant mouse SAMR1 and its variation in brain of senescence-accelerated-prone mouse SAMP8. Fernández-Gómez FJ; Muñoz-Delgado E; Montenegro MF; Campoy FJ; Vidal CJ; Jordán J J Neurosci Res; 2010 Jan; 88(1):155-66. PubMed ID: 19610099 [TBL] [Abstract][Full Text] [Related]
27. Age-related expression of adenosine receptors in brain from the senescence-accelerated mouse. Castillo CA; Albasanz JL; León D; Jordán J; Pallàs M; Camins A; Martín M Exp Gerontol; 2009; 44(6-7):453-61. PubMed ID: 19410642 [TBL] [Abstract][Full Text] [Related]
28. Increased mitochondrial DNA deletion in the brain of SAMP8, a mouse model for spontaneous oxidative stress brain. Fujibayashi Y; Yamamoto S; Waki A; Konishi J; Yonekura Y Neurosci Lett; 1998 Sep; 254(2):109-12. PubMed ID: 9779932 [TBL] [Abstract][Full Text] [Related]
29. Structural and functional changes in proteins induced by free radical-mediated oxidative stress and protective action of the antioxidants N-tert-butyl-alpha-phenylnitrone and vitamin E. Butterfield DA; Koppal T; Howard B; Subramaniam R; Hall N; Hensley K; Yatin S; Allen K; Aksenov M; Aksenova M; Carney J Ann N Y Acad Sci; 1998 Nov; 854():448-62. PubMed ID: 9928452 [TBL] [Abstract][Full Text] [Related]
30. The activity and mRNA expression of β-secretase, cathepsin D, and cathepsin B in the brain of senescence-accelerated mouse. Zhou JW; Cheng XR; Cheng JP; Zhou WX; Zhang YX J Alzheimers Dis; 2012; 28(2):471-80. PubMed ID: 22008266 [TBL] [Abstract][Full Text] [Related]
31. Effects of mitochondrial respiratory stimulation on membrane lipids and proteins: an electron paramagnetic resonance investigation. Gabbita SP; Subramaniam R; Allouch F; Carney JM; Butterfield DA Biochim Biophys Acta; 1998 Jul; 1372(2):163-73. PubMed ID: 9675268 [TBL] [Abstract][Full Text] [Related]
32. Synergistic inhibition of respiration in brain mitochondria by nitric oxide and dihydroxyphenylacetic acid (DOPAC). Implications for Parkinson's disease. Nunes C; Almeida L; Laranjinha J Neurochem Int; 2005 Aug; 47(3):173-82. PubMed ID: 15893407 [TBL] [Abstract][Full Text] [Related]
33. Time-course of mitochondrial gene expressions in mice brains: implications for mitochondrial dysfunction, oxidative damage, and cytochrome c in aging. Manczak M; Jung Y; Park BS; Partovi D; Reddy PH J Neurochem; 2005 Feb; 92(3):494-504. PubMed ID: 15659220 [TBL] [Abstract][Full Text] [Related]
34. Ameliorative effects of lotus seedpod proanthocyanidins on cognitive deficits and oxidative damage in senescence-accelerated mice. Gong Y; Liu L; Xie B; Liao Y; Yang E; Sun Z Behav Brain Res; 2008 Dec; 194(1):100-7. PubMed ID: 18652848 [TBL] [Abstract][Full Text] [Related]
35. Oxidative damage in the senescence-accelerated mouse. Mori A; Utsumi K; Liu J; Hosokawa M Ann N Y Acad Sci; 1998 Nov; 854():239-50. PubMed ID: 9928434 [TBL] [Abstract][Full Text] [Related]
36. Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. Fujibayashi Y; Taniuchi H; Yonekura Y; Ohtani H; Konishi J; Yokoyama A J Nucl Med; 1997 Jul; 38(7):1155-60. PubMed ID: 9225812 [TBL] [Abstract][Full Text] [Related]
37. Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Hauptmann S; Scherping I; Dröse S; Brandt U; Schulz KL; Jendrach M; Leuner K; Eckert A; Müller WE Neurobiol Aging; 2009 Oct; 30(10):1574-86. PubMed ID: 18295378 [TBL] [Abstract][Full Text] [Related]
38. Age-related changes of Nrf2 and phosphorylated GSK-3β in a mouse model of accelerated aging (SAMP8). Tomobe K; Shinozuka T; Kuroiwa M; Nomura Y Arch Gerontol Geriatr; 2012; 54(2):e1-7. PubMed ID: 21784539 [TBL] [Abstract][Full Text] [Related]
39. Changes in expressions of proinflammatory cytokines IL-1beta, TNF-alpha and IL-6 in the brain of senescence accelerated mouse (SAM) P8. Tha KK; Okuma Y; Miyazaki H; Murayama T; Uehara T; Hatakeyama R; Hayashi Y; Nomura Y Brain Res; 2000 Dec; 885(1):25-31. PubMed ID: 11121526 [TBL] [Abstract][Full Text] [Related]