These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 9779940)

  • 1. Parvalbumin is expressed in a reciprocal circuit linking the medial geniculate body and auditory neocortex in the rabbit.
    de Venecia RK; Smelser CB; McMullen NT
    J Comp Neurol; 1998 Oct; 400(3):349-62. PubMed ID: 9779940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quantitative analysis of parvalbumin neurons in rabbit auditory neocortex.
    McMullen NT; Smelser CB; de Venecia RK
    J Comp Neurol; 1994 Nov; 349(4):493-511. PubMed ID: 7860786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thalamocortical afferents of Lorente de Nó: medial geniculate axons that project to primary auditory cortex have collateral branches to layer I.
    Cetas JS; de Venecia RK; McMullen NT
    Brain Res; 1999 May; 830(1):203-8. PubMed ID: 10350577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). IV. Connections with anatomically characterized subcortical structures.
    Budinger E; Heil P; Scheich H
    Eur J Neurosci; 2000 Jul; 12(7):2452-74. PubMed ID: 10947822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thalamocortical projections to rat auditory cortex from the ventral and dorsal divisions of the medial geniculate nucleus.
    Smith PH; Uhlrich DJ; Manning KA; Banks MI
    J Comp Neurol; 2012 Jan; 520(1):34-51. PubMed ID: 21618239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for nonreciprocal organization of the mouse auditory thalamocortical-corticothalamic projection systems.
    Llano DA; Sherman SM
    J Comp Neurol; 2008 Mar; 507(2):1209-27. PubMed ID: 18181153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The insular auditory field receives input from the lemniscal subdivision of the auditory thalamus in mice.
    Takemoto M; Hasegawa K; Nishimura M; Song WJ
    J Comp Neurol; 2014 Apr; 522(6):1373-89. PubMed ID: 24638871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complementary expression of parvalbumin and calbindin D-28k delineates subdivisions of the rabbit medial geniculate body.
    de Venecia RK; Smelser CB; Lossman SD; McMullen NT
    J Comp Neurol; 1995 Sep; 359(4):595-612. PubMed ID: 7499550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual compartments of the ventral division of the medial geniculate body projecting to the core region of the auditory cortex in C57BL/6 mice.
    Horie M; Tsukano H; Hishida R; Takebayashi H; Shibuki K
    Neurosci Res; 2013 Aug; 76(4):207-12. PubMed ID: 23692741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of SMI 32-stained pyramidal cells, parvalbumin-immunoreactive chandelier cells, and presumptive thalamocortical axons in the human temporal neocortex.
    Del Río MR; DeFelipe J
    J Comp Neurol; 1994 Apr; 342(3):389-408. PubMed ID: 7517410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thalamocortical patches in auditory neocortex.
    McMullen NT; de Venecia RK
    Brain Res; 1993 Aug; 620(2):317-22. PubMed ID: 7690303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell types and response properties of neurons in the ventral division of the medial geniculate body of the rabbit.
    Cetas JS; Price RO; Velenovsky DS; Crowe JJ; Sinex DG; McMullen NT
    J Comp Neurol; 2002 Mar; 445(1):78-96. PubMed ID: 11891655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential distribution of parvalbumin-immunoreactive pericellular clusters of terminal boutons in developing and adult monkey neocortex.
    Akil M; Lewis DA
    Exp Neurol; 1992 Feb; 115(2):239-49. PubMed ID: 1735469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendritic orientation and laminar architecture in the rabbit auditory thalamus.
    Cetas JS; Price RO; Crowe J; Velenovsky DS; McMullen NT
    J Comp Neurol; 2003 Apr; 458(3):307-17. PubMed ID: 12619083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organization of rodent auditory cortex: anterograde transport of PHA-L from MGv to temporal neocortex.
    Romanski LM; LeDoux JE
    Cereb Cortex; 1993; 3(6):499-514. PubMed ID: 7511011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Terminal morphology and distribution of corticothalamic fibers originating from layers 5 and 6 of cat primary auditory cortex.
    Ojima H
    Cereb Cortex; 1994; 4(6):646-63. PubMed ID: 7703690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic inter- and intralaminar connections and their relationship to the tonotopic map in cat primary auditory cortex.
    Wallace MN; Kitzes LM; Jones EG
    Exp Brain Res; 1991; 86(3):527-44. PubMed ID: 1761089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anatomy of the rat medial geniculate body: I. Cytoarchitecture, myeloarchitecture, and neocortical connectivity.
    Clerici WJ; Coleman JR
    J Comp Neurol; 1990 Jul; 297(1):14-31. PubMed ID: 2376630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The synaptology of parvalbumin-immunoreactive neurons in the primate prefrontal cortex.
    Williams SM; Goldman-Rakic PS; Leranth C
    J Comp Neurol; 1992 Jun; 320(3):353-69. PubMed ID: 1613130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single thalamocortical axons diverge to multiple patches in neonatal auditory cortex.
    de Venecia RK; McMullen NT
    Brain Res Dev Brain Res; 1994 Aug; 81(1):135-42. PubMed ID: 7805280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.