BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 9780234)

  • 1. Uracil DNA glycosylase from Mycobacterium smegmatis and its distinct biochemical properties.
    Purnapatre K; Varshney U
    Eur J Biochem; 1998 Sep; 256(3):580-8. PubMed ID: 9780234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of single-stranded DNA binding proteins (SSBs) on uracil DNA glycosylases (UDGs) from Escherichia coli and mycobacteria.
    Purnapatre K; Handa P; Venkatesh J; Varshney U
    Nucleic Acids Res; 1999 Sep; 27(17):3487-92. PubMed ID: 10446237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complexes of the uracil-DNA glycosylase inhibitor protein, Ugi, with Mycobacterium smegmatis and Mycobacterium tuberculosis uracil-DNA glycosylases.
    Acharya N; Kumar P; Varshney U
    Microbiology (Reading); 2003 Jul; 149(Pt 7):1647-1658. PubMed ID: 12855717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of leucine 191 of Escherichia coli uracil DNA glycosylase in the formation of a highly stable complex with the substrate mimic, ugi, and in uracil excision from the synthetic substrates.
    Handa P; Roy S; Varshney U
    J Biol Chem; 2001 May; 276(20):17324-31. PubMed ID: 11278852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase.
    Putnam CD; Shroyer MJ; Lundquist AJ; Mol CD; Arvai AS; Mosbaugh DW; Tainer JA
    J Mol Biol; 1999 Mar; 287(2):331-46. PubMed ID: 10080896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic mechanism of damage site recognition and uracil flipping by Escherichia coli uracil DNA glycosylase.
    Stivers JT; Pankiewicz KW; Watanabe KA
    Biochemistry; 1999 Jan; 38(3):952-63. PubMed ID: 9893991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutational analysis of the uracil DNA glycosylase inhibitor protein and its interaction with Escherichia coli uracil DNA glycosylase.
    Acharya N; Roy S; Varshney U
    J Mol Biol; 2002 Aug; 321(4):579-90. PubMed ID: 12206774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray analysis of a complex of Escherichia coli uracil DNA glycosylase (EcUDG) with a proteinaceous inhibitor. The structure elucidation of a prokaryotic UDG.
    Ravishankar R; Bidya Sagar M; Roy S; Purnapatre K; Handa P; Varshney U; Vijayan M
    Nucleic Acids Res; 1998 Nov; 26(21):4880-7. PubMed ID: 9776748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of mutations at tyrosine 66 and asparagine 123 in the active site pocket of Escherichia coli uracil DNA glycosylase on uracil excision from synthetic DNA oligomers: evidence for the occurrence of long-range interactions between the enzyme and substrate.
    Handa P; Acharya N; Varshney U
    Nucleic Acids Res; 2002 Jul; 30(14):3086-95. PubMed ID: 12136091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specificities and kinetics of uracil excision from uracil-containing DNA oligomers by Escherichia coli uracil DNA glycosylase.
    Varshney U; van de Sande JH
    Biochemistry; 1991 Apr; 30(16):4055-61. PubMed ID: 2018771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of a conserved phenylalanine residue to the activity of Escherichia coli uracil DNA glycosylase.
    Shaw RW; Feller JA; Bloom LB
    DNA Repair (Amst); 2004 Oct; 3(10):1273-83. PubMed ID: 15336623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of Escherichia coli uracil DNA glycosylase and its complexes with uracil and glycerol: structure and glycosylase mechanism revisited.
    Xiao G; Tordova M; Jagadeesh J; Drohat AC; Stivers JT; Gilliland GL
    Proteins; 1999 Apr; 35(1):13-24. PubMed ID: 10090282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consensus sequences for good and poor removal of uracil from double stranded DNA by uracil-DNA glycosylase.
    Eftedal I; Guddal PH; Slupphaug G; Volden G; Krokan HE
    Nucleic Acids Res; 1993 May; 21(9):2095-101. PubMed ID: 8502549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of uracil DNA glycosylase in Pseudomonas aeruginosa and Mycobacterium smegmatis, G+C-rich bacteria, in mutation prevention, tolerance to acidified nitrite, and endurance in mouse macrophages.
    Venkatesh J; Kumar P; Krishna PS; Manjunath R; Varshney U
    J Biol Chem; 2003 Jul; 278(27):24350-8. PubMed ID: 12679366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrasting effects of single stranded DNA binding protein on the activity of uracil DNA glycosylase from Escherichia coli towards different DNA substrates.
    Kumar NV; Varshney U
    Nucleic Acids Res; 1997 Jun; 25(12):2336-43. PubMed ID: 9171083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical properties of single-stranded DNA-binding protein from Mycobacterium smegmatis, a fast-growing mycobacterium and its physical and functional interaction with uracil DNA glycosylases.
    Acharya N; Varshney U
    J Mol Biol; 2002 May; 318(5):1251-64. PubMed ID: 12083515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inefficient excision of uracil from loop regions of DNA oligomers by E. coli uracil DNA glycosylase.
    Kumar NV; Varshney U
    Nucleic Acids Res; 1994 Sep; 22(18):3737-41. PubMed ID: 7937085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substitutions at tyrosine 66 of Escherichia coli uracil DNA glycosylase lead to characterization of an efficient enzyme that is recalcitrant to product inhibition.
    Acharya N; Talawar RK; Saikrishnan K; Vijayan M; Varshney U
    Nucleic Acids Res; 2003 Dec; 31(24):7216-26. PubMed ID: 14654697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of a family 4 uracil-DNA glycosylase from Thermus thermophilus HB8.
    Hoseki J; Okamoto A; Masui R; Shibata T; Inoue Y; Yokoyama S; Kuramitsu S
    J Mol Biol; 2003 Oct; 333(3):515-26. PubMed ID: 14556741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excision of uracil from DNA by the hyperthermophilic Afung protein is dependent on the opposite base and stimulated by heat-induced transition to a more open structure.
    Knaevelsrud I; Ruoff P; Anensen H; Klungland A; Bjelland S; Birkeland NK
    Mutat Res; 2001 Dec; 487(3-4):173-90. PubMed ID: 11738943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.