BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9781689)

  • 1. Differential effects of alkaloids on sodium currents of isolated single skeletal muscle fibers.
    Körper S; Wink M; Fink RH
    FEBS Lett; 1998 Oct; 436(2):251-5. PubMed ID: 9781689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NA+- and K+-channels as molecular targets of the alkaloid ajmaline in skeletal muscle fibres.
    Friedrich O; V Wegner F; Wink M; Fink RH
    Br J Pharmacol; 2007 May; 151(1):82-93. PubMed ID: 17351660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative inotropic effects of tetrodotoxin and seven class 1 antiarrhythmic drugs in relation to sodium channel blockade.
    Honerjäger P; Loibl E; Steidl I; Schönsteiner G; Ulm K
    Naunyn Schmiedebergs Arch Pharmacol; 1986 Feb; 332(2):184-95. PubMed ID: 2422563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Kinetics of the blocking action of antifibrillatory drugs on sodium channels in myocardial fibers].
    Heistracher P; Thaler E; Liebeswar G
    Naunyn Schmiedebergs Arch Pharmakol; 1970; 266(4):351-2. PubMed ID: 4253791
    [No Abstract]   [Full Text] [Related]  

  • 5. The cardiac electrophysiological effects of sparteine and its analogue BRB-I-28 in the rat.
    Pugsley MK; Saint DA; Hayes E; Berlin KD; Walker MJ
    Eur J Pharmacol; 1995 Dec; 294(1):319-27. PubMed ID: 8788447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the antimyotonic activity of mexiletine and some new analogs on sodium currents of single muscle fibers and on the abnormal excitability of the myotonic ADR mouse.
    De Luca A; Pierno S; Natuzzi F; Franchini C; Duranti A; Lentini G; Tortorella V; Jockusch H; Camerino DC
    J Pharmacol Exp Ther; 1997 Jul; 282(1):93-100. PubMed ID: 9223544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium channel slow inactivation and the distribution of sodium channels on skeletal muscle fibres enable the performance properties of different skeletal muscle fibre types.
    Ruff RL
    Acta Physiol Scand; 1996 Mar; 156(3):159-68. PubMed ID: 8729676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Block of NA+ and K+ currents in rat ventricular myocytes by quinacainol and quinidine.
    Pugsley MK; Walker MJ; Saint DA
    Clin Exp Pharmacol Physiol; 2005; 32(1-2):60-5. PubMed ID: 15730436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of mexiletine on sea anemone toxin-induced non-inactivating sodium channels of rat skeletal muscle: a model of sodium channel myotonia.
    Desaphy JF; Camerino DC; Tortorella V; De Luca A
    Neuromuscul Disord; 1999 May; 9(3):182-9. PubMed ID: 10382914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Kinetics of the recovery of sodium channels from the blocking action of antifibrillatory drugs].
    Liebeswar G; Thaler E; Heistracher P
    Naunyn Schmiedebergs Arch Pharmakol; 1970; 266(4):392-3. PubMed ID: 4253824
    [No Abstract]   [Full Text] [Related]  

  • 11. Inhibition of skeletal muscle sodium currents by mexiletine analogues: specific hydrophobic interactions rather than lipophilia per se account for drug therapeutic profile.
    De Luca A; Talon S; De Bellis M; Desaphy JF; Franchini C; Lentini G; Catalano A; Corbo F; Tortorella V; Conte-Camerino D
    Naunyn Schmiedebergs Arch Pharmacol; 2003 Mar; 367(3):318-27. PubMed ID: 12644906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of temperature on slow and fast inactivation of rat skeletal muscle Na(+) channels.
    Ruff RL
    Am J Physiol; 1999 Nov; 277(5):C937-47. PubMed ID: 10564086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential block of inactivation-deficient Na+ currents by capsaicin reveals a non-TRPV1 receptor within the Na+ channel.
    Wang SY; Mitchell J; Wang GK
    Pain; 2007 Jan; 127(1-2):73-83. PubMed ID: 16962240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification by ageing of the tetrodotoxin-sensitive sodium channels in rat skeletal muscle fibres.
    Desaphy JF; De Luca A; Imbrici P; Conte Camerino D
    Biochim Biophys Acta; 1998 Aug; 1373(1):37-46. PubMed ID: 9733912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actions of antiarrhythmic drugs on refractory period and contractility of isolated rat and guinea-pig atria.
    Zetler G; Strubelt O
    Naunyn Schmiedebergs Arch Pharmakol; 1971; 271(4):335-45. PubMed ID: 4257637
    [No Abstract]   [Full Text] [Related]  

  • 16. Blockade by antiarrhythmic drugs of glibenclamide-sensitive K+ channels in Xenopus oocytes.
    Sakuta H; Okamoto K; Watanabe Y
    Br J Pharmacol; 1992 Dec; 107(4):1061-7. PubMed ID: 1361399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiological mechanisms for antiarrhythmic efficacy and positive inotropy of liriodenine, a natural aporphine alkaloid from Fissistigma glaucescens.
    Chang GJ; Wu MH; Wu YC; Su MJ
    Br J Pharmacol; 1996 Aug; 118(7):1571-83. PubMed ID: 8842417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of N-propyl-ajmaline hydrogen tartrate (NPAB), SPARTEINE SULFATE (SPARteine) and NPAB + sparteine on ECG and aconitine arrhythmias of SIV-rats.
    von Philipsborn G
    Arzneimittelforschung; 1973 Dec; 23(12):1729-33. PubMed ID: 4801683
    [No Abstract]   [Full Text] [Related]  

  • 19. Class Ic antiarrhythmics block human skeletal muscle Na channel during myotonia-like stimulation.
    Aoike F; Takahashi MP; Sakoda S
    Eur J Pharmacol; 2006 Feb; 532(1-2):24-31. PubMed ID: 16473348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel voltage clamp technique for mapping ionic currents from cultured skeletal myotubes.
    Anson BD; Roberts WM
    Biophys J; 1998 Jun; 74(6):2963-72. PubMed ID: 9635750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.