These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 978176)

  • 21. Flow cytometry of human semen: a preliminary study of a non-invasive method for the detection of spermatogenetic defects.
    Levek-Motola N; Soffer Y; Shochat L; Raziel A; Lewin LM; Golan R
    Hum Reprod; 2005 Dec; 20(12):3469-75. PubMed ID: 16123093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Paternal chromosome incorporation into the zygote nucleus is controlled by maternal haploid in Drosophila.
    Loppin B; Berger F; Couble P
    Dev Biol; 2001 Mar; 231(2):383-96. PubMed ID: 11237467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA interference during spermatogenesis in mice.
    Shoji M; Chuma S; Yoshida K; Morita T; Nakatsuji N
    Dev Biol; 2005 Jun; 282(2):524-34. PubMed ID: 15950615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nuclear-cytoplasmic relations in the mitosis of sea urchin eggs. IV. Modification of gamma-radiation-induced damage to sperm in whole eggs and in haploid and diploid half-eggs.
    Rustad RC
    Radiat Res; 1973 May; 54(2):328-32. PubMed ID: 4703891
    [No Abstract]   [Full Text] [Related]  

  • 25. The aberrant spermatogenesis of the Haplothrips simplex (Buffa) (Thysanoptera): ultrastructural study.
    Paccagnini E; De Marzo L; Giusti F; Dallai R
    Tissue Cell; 2006 Jun; 38(3):177-86. PubMed ID: 16620898
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Timing of entry of meiosis depends on a mark generated by DNA methyltransferase 3a in testis.
    Yaman R; Grandjean V
    Mol Reprod Dev; 2006 Mar; 73(3):390-7. PubMed ID: 16362968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mammalian testis: a target of in vivo electroporation.
    Yomgogida K
    Dev Growth Differ; 2008 Aug; 50(6):513-5. PubMed ID: 18482405
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Specific behavioural responses triggered by identified mechanosensory receptor cells in the apical field of the giant rotifer Asplanchna sieboldi.
    Joanidopoulos KD; Marwan W
    J Exp Biol; 1998 Jan; 201(Pt 2):169-77. PubMed ID: 9405299
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Haploid all the way: a new style of asexuality revealed in animals.
    Perrot V
    Bioessays; 2002 Feb; 24(2):114-8. PubMed ID: 11835275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of Lecane rotifers in activated sludge bulking control.
    Fiałkowska E; Pajdak-Stós A
    Water Res; 2008 May; 42(10-11):2483-90. PubMed ID: 18321557
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of dietary restriction on cell division potential, DNA content and enzyme levels in the rotifer Asplanchna brightwelli.
    Verdone-Smith C; Enesco HE
    Exp Gerontol; 1982; 17(6):463-71. PubMed ID: 7183453
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spontaneous activity level and life span in rotifers: lack of support for the rate of living theory.
    Enesco HE; McTavish A; Garberi R
    Gerontology; 1990; 36(5-6):256-61. PubMed ID: 2076825
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sex-specific cannibalism in the rotifer Asplanchna sieboldi.
    Gilbert JJ
    Science; 1976 Nov; 194(4266):730-2. PubMed ID: 982038
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genomic clues to an ancient asexual scandal.
    Rice WR; Friberg U
    Genome Biol; 2007; 8(12):232. PubMed ID: 18177507
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nuclear number in the rotifer asplanchna: intraclonal variation and environmental control.
    Birky CW; Field B
    Science; 1966 Feb; 151(3710):585-7. PubMed ID: 17809500
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diatoms and rotifers in cytological smears.
    Martínez-Girón R; Ribas-Barceló A; García-Miralles T; López-Cabanilles D; Tamargo-Peláez L; Torre-Bayón C; Fernández-Alvarez L
    Cytopathology; 2003 Apr; 14(2):70-2. PubMed ID: 12713478
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chromosome complement and male haploidy of Asplanchna priodonta Gosse 1850 (Rotatoria).
    Robotti C
    Experientia; 1975 Nov; 31(11):1270-2. PubMed ID: 1204769
    [No Abstract]   [Full Text] [Related]  

  • 38. Polymorphism in the rotifer Asplanchna sieboldi. Fine structure of saccate, cruciform and campanulate females.
    Wurdak ES; Gilbert JJ
    Cell Tissue Res; 1976 Jul; 169(4):435-48. PubMed ID: 991194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spireme karyodieresis: a new type of reductional division.
    Koshman RW; Serra JA
    Can J Genet Cytol; 1967 Mar; 9(1):31-7. PubMed ID: 5616737
    [No Abstract]   [Full Text] [Related]  

  • 40. Observations of Procháska on rotifers in 1786.
    BARTOS E
    Chekhoslovatskaia Biol; 1954 Nov; 3(5):335-6. PubMed ID: 14364649
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.