These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
402 related articles for article (PubMed ID: 9782051)
1. Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein. Wachter RM; Elsliger MA; Kallio K; Hanson GT; Remington SJ Structure; 1998 Oct; 6(10):1267-77. PubMed ID: 9782051 [TBL] [Abstract][Full Text] [Related]
2. Structural and spectral response of green fluorescent protein variants to changes in pH. Elsliger MA; Wachter RM; Hanson GT; Kallio K; Remington SJ Biochemistry; 1999 Apr; 38(17):5296-301. PubMed ID: 10220315 [TBL] [Abstract][Full Text] [Related]
3. Crystallographic and energetic analysis of binding of selected anions to the yellow variants of green fluorescent protein. Wachter RM; Yarbrough D; Kallio K; Remington SJ J Mol Biol; 2000 Aug; 301(1):157-71. PubMed ID: 10926499 [TBL] [Abstract][Full Text] [Related]
4. Green fluorescent protein variants as ratiometric dual emission pH sensors. 1. Structural characterization and preliminary application. Hanson GT; McAnaney TB; Park ES; Rendell ME; Yarbrough DK; Chu S; Xi L; Boxer SG; Montrose MH; Remington SJ Biochemistry; 2002 Dec; 41(52):15477-88. PubMed ID: 12501176 [TBL] [Abstract][Full Text] [Related]
5. Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Brejc K; Sixma TK; Kitts PA; Kain SR; Tsien RY; Ormö M; Remington SJ Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2306-11. PubMed ID: 9122190 [TBL] [Abstract][Full Text] [Related]
6. Green fluorescent protein. Chalfie M Photochem Photobiol; 1995 Oct; 62(4):651-6. PubMed ID: 7480149 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of the Aequorea victoria green fluorescent protein. Ormö M; Cubitt AB; Kallio K; Gross LA; Tsien RY; Remington SJ Science; 1996 Sep; 273(5280):1392-5. PubMed ID: 8703075 [TBL] [Abstract][Full Text] [Related]
8. Molecular dynamics simulations of enhanced green fluorescent proteins: effects of F64L, S65T and T203Y mutations on the ground-state proton equilibria. Nifosì R; Tozzini V Proteins; 2003 May; 51(3):378-89. PubMed ID: 12696049 [TBL] [Abstract][Full Text] [Related]
9. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. Griesbeck O; Baird GS; Campbell RE; Zacharias DA; Tsien RY J Biol Chem; 2001 Aug; 276(31):29188-94. PubMed ID: 11387331 [TBL] [Abstract][Full Text] [Related]
10. Structural characterization of a thiazoline-containing chromophore in an orange fluorescent protein, monomeric Kusabira Orange. Kikuchi A; Fukumura E; Karasawa S; Mizuno H; Miyawaki A; Shiro Y Biochemistry; 2008 Nov; 47(44):11573-80. PubMed ID: 18844376 [TBL] [Abstract][Full Text] [Related]
11. Deletion mapping of the Aequorea victoria green fluorescent protein. Dopf J; Horiagon TM Gene; 1996; 173(1 Spec No):39-44. PubMed ID: 8707054 [TBL] [Abstract][Full Text] [Related]
12. zFP538, a yellow-fluorescent protein from Zoanthus, contains a novel three-ring chromophore. Remington SJ; Wachter RM; Yarbrough DK; Branchaud B; Anderson DC; Kallio K; Lukyanov KA Biochemistry; 2005 Jan; 44(1):202-12. PubMed ID: 15628861 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure and photodynamic behavior of the blue emission variant Y66H/Y145F of green fluorescent protein. Wachter RM; King BA; Heim R; Kallio K; Tsien RY; Boxer SG; Remington SJ Biochemistry; 1997 Aug; 36(32):9759-65. PubMed ID: 9245407 [TBL] [Abstract][Full Text] [Related]
14. Refined crystal structures of red and green fluorescent proteins from the button polyp Zoanthus. Pletneva N; Pletnev V; Tikhonova T; Pakhomov AA; Popov V; Martynov VI; Wlodawer A; Dauter Z; Pletnev S Acta Crystallogr D Biol Crystallogr; 2007 Oct; 63(Pt 10):1082-93. PubMed ID: 17881826 [TBL] [Abstract][Full Text] [Related]
15. Structure of the red fluorescent protein from a lancelet (Branchiostoma lanceolatum): a novel GYG chromophore covalently bound to a nearby tyrosine. Pletnev VZ; Pletneva NV; Lukyanov KA; Souslova EA; Fradkov AF; Chudakov DM; Chepurnykh T; Yampolsky IV; Wlodawer A; Dauter Z; Pletnev S Acta Crystallogr D Biol Crystallogr; 2013 Sep; 69(Pt 9):1850-60. PubMed ID: 23999308 [TBL] [Abstract][Full Text] [Related]
16. Chromophore aspartate oxidation-decarboxylation in the green-to-red conversion of a fluorescent protein from Zoanthus sp. 2. Pakhomov AA; Martynov VI Biochemistry; 2007 Oct; 46(41):11528-35. PubMed ID: 17892303 [TBL] [Abstract][Full Text] [Related]
17. The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation. Rosenow MA; Huffman HA; Phail ME; Wachter RM Biochemistry; 2004 Apr; 43(15):4464-72. PubMed ID: 15078092 [TBL] [Abstract][Full Text] [Related]
18. Dual color microscopic imagery of cells expressing the green fluorescent protein and a red-shifted variant. Yang TT; Kain SR; Kitts P; Kondepudi A; Yang MM; Youvan DC Gene; 1996; 173(1 Spec No):19-23. PubMed ID: 8707051 [TBL] [Abstract][Full Text] [Related]
19. Color transitions in coral's fluorescent proteins by site-directed mutagenesis. Gurskaya NG; Savitsky AP; Yanushevich YG; Lukyanov SA; Lukyanov KA BMC Biochem; 2001; 2():6. PubMed ID: 11459517 [TBL] [Abstract][Full Text] [Related]
20. Spectral "Fine" Tuning in Fluorescent Proteins: The Case of the GFP-Like Chromophore in the Anionic Protonation State. Amat P; Nifosì R J Chem Theory Comput; 2013 Jan; 9(1):497-508. PubMed ID: 26589050 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]