These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 9783055)

  • 1. Role of the plasma and erythrocytes in veno-arterial portal changes during post prandial state in the rat.
    Agli A; Schaefer A; Geny B; Piquard F; Haberey P
    Arch Physiol Biochem; 1998 Feb; 106(1):12-8. PubMed ID: 9783055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of changes in plasma amino acid concentrations on erythrocyte amino acid content.
    Schaefer A; Piquard F; Haberey P
    Clin Biochem; 1990 Jun; 23(3):237-40. PubMed ID: 2372938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood cell to plasma gradients of amino acids in arterial and venous blood in fed and fasted rats.
    Picó C; Lladó I; Pons A; Palou A
    Comp Biochem Physiol Comp Physiol; 1994 Mar; 107(3):589-95. PubMed ID: 7909740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Splanchnic-bed transfers of amino acids in sheep blood and plasma, as monitored through use of a multiple U-13C-labelled amino acid mixture.
    Lobley GE; Connell A; Revell DK; Bequette BJ; Brown DS; Calder AG
    Br J Nutr; 1996 Feb; 75(2):217-35. PubMed ID: 8785200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The human erythrocyte anion-transport protein. Partial amino acid sequence, conformation and a possible molecular mechanism for anion exchange.
    Brock CJ; Tanner MJ; Kempf C
    Biochem J; 1983 Sep; 213(3):577-86. PubMed ID: 6615451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erythrocytes participate significantly in blood transport of amino acids during the post absorptive state in normal humans.
    Agli AN; Schaefer A; Geny B; Piquard F; Haberey P
    Eur J Appl Physiol Occup Physiol; 1998 Nov; 78(6):502-8. PubMed ID: 9840404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ruminally protected methionine on splanchnic metabolism of amino acids in lactating dairy cows.
    Berthiaume R; Thivierge MC; Patton RA; Dubreuil P; Stevenson M; McBride BW; Lapierre H
    J Dairy Sci; 2006 May; 89(5):1621-34. PubMed ID: 16606732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human splanchnic amino-acid metabolism.
    Neis EP; Sabrkhany S; Hundscheid I; Schellekens D; Lenaerts K; Olde Damink SW; Blaak EE; Dejong CH; Rensen SS
    Amino Acids; 2017 Jan; 49(1):161-172. PubMed ID: 27714515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Transport of amino acids in the splanchnic bed by blood plasma and blood in the preruminant calf].
    Houlier ML; Patureau Mirand P; Durand D; Bauchart D; Lefaivre J; Bayle G
    Reprod Nutr Dev; 1991; 31(4):399-410. PubMed ID: 1747198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasma and erythrocyte amino acids in mother and fetus.
    Cetin I; Hirst K; Corbetta C; Sereni LP; Marconi AM; Zerbe GO
    Biol Neonate; 1991; 60(2):83-91. PubMed ID: 1932390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of whole blood and plasma in the interorgan supply of free amino acids for the mammary gland of lactating dairy cows.
    Mackle TR; Dwyer DA; Ingvartsen KL; Chouinard PY; Ross DA; Bauman DE
    J Dairy Sci; 2000 Jun; 83(6):1300-9. PubMed ID: 10877395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Splanchnic amino acid balance is affected by moderate variations of dietary protein in the developing Zucker rat.
    Masanés RM; Rafecas I; Remesar X
    Int J Food Sci Nutr; 2001 Mar; 52(2):183-92. PubMed ID: 11303466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of inter-organ amino-acid transport by blood cells in humans.
    Felig P; Wahren J; Räf L
    Proc Natl Acad Sci U S A; 1973 Jun; 70(6):1775-9. PubMed ID: 4515937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of a U-13C-labeled amino acid tracer in lactating dairy goats for simultaneous measurements of the flux of amino acids in plasma and the partition of amino acids to the mammary gland.
    Bequette BJ; Backwell FR; Calder AG; Metcalf JA; Beever DE; MacRae JC; Lobley GE
    J Dairy Sci; 1997 Nov; 80(11):2842-53. PubMed ID: 9406077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inter-organ relationships between glucose, lactate and amino acids in rats fed on high-carbohydrate or high-protein diets.
    Rémésey C; Demigné C; Aufrère J
    Biochem J; 1978 Feb; 170(2):321-9. PubMed ID: 637846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Umbilical venous-arterial differences of plasma amino acids in humans at midpregnancy.
    Hayashi S; Sanada K; Kido K
    Int J Biol Res Pregnancy; 1981; 2(2):77-9. PubMed ID: 7333694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of amino acids in whole blood and plasma of sheep.
    Heitmann RN; Bergman EN
    Am J Physiol; 1980 Oct; 239(4):E242-E247. PubMed ID: 7425117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary and tertiary structure of the principal human adenylate kinase.
    Von Zabern I; Wittmann-Liebold B; Untucht-Grau R; Schirmer RH; Pai EF
    Eur J Biochem; 1976 Sep; 68(1):281-90. PubMed ID: 183954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postprandial portal fluxes of essential amino acids, volatile fatty acids, and urea-nitrogen in growing pigs fed a high-fiber diet supplemented with a multi-enzyme cocktail.
    Agyekum AK; Kiarie E; Walsh MC; Nyachoti CM
    J Anim Sci; 2016 Sep; 94(9):3771-3785. PubMed ID: 27898914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complete amino acid sequence of copper-zinc superoxide dismutase from Drosophila melanogaster.
    Lee YM; Friedman DJ; Ayala FJ
    Arch Biochem Biophys; 1985 Sep; 241(2):577-89. PubMed ID: 3929689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.