These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 9783166)

  • 1. Sugar utilization and its control in hyperthermophiles.
    de Vos WM; Kengen SW; Voorhorst WG; van der Oost J
    Extremophiles; 1998 Aug; 2(3):201-5. PubMed ID: 9783166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ferredoxin-dependent conversion of glyceraldehyde-3-phosphate in the hyperthermophilic archaeon Pyrococcus furiosus represents a novel site of glycolytic regulation.
    van der Oost J; Schut G; Kengen SW; Hagen WR; Thomm M; de Vos WM
    J Biol Chem; 1998 Oct; 273(43):28149-54. PubMed ID: 9774434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique sugar metabolism and novel enzymes of hyperthermophilic archaea.
    Sakuraba H; Goda S; Ohshima T
    Chem Rec; 2004; 3(5):281-7. PubMed ID: 14762828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering a hyperthermophilic archaeon for temperature-dependent product formation.
    Basen M; Sun J; Adams MW
    mBio; 2012; 3(2):e00053-12. PubMed ID: 22511351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulating Fermentation Pathways in the Hyperthermophilic Archaeon
    Lipscomb GL; Crowley AT; Nguyen DMN; Keller MW; O'Quinn HC; Tanwee TNN; Vailionis JL; Zhang K; Zhang Y; Kelly RM; Adams MWW
    Appl Environ Microbiol; 2023 Jun; 89(6):e0001223. PubMed ID: 37162365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of the glycolytic pathway in Pyrococcus furiosus and the implications for metabolic engineering.
    Straub CT; Schut G; Otten JK; Keller LM; Adams MWW; Kelly RM
    Extremophiles; 2020 Jul; 24(4):511-518. PubMed ID: 32415359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glyceraldehyde-3-phosphate ferredoxin oxidoreductase, a novel tungsten-containing enzyme with a potential glycolytic role in the hyperthermophilic archaeon Pyrococcus furiosus.
    Mukund S; Adams MW
    J Biol Chem; 1995 Apr; 270(15):8389-92. PubMed ID: 7721730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the TrmB-like protein, PF0124, a TGM-recognizing global transcriptional regulator of the hyperthermophilic archaeon Pyrococcus furiosus.
    Lee SJ; Surma M; Seitz S; Hausner W; Thomm M; Boos W
    Mol Microbiol; 2007 Jul; 65(2):305-18. PubMed ID: 17587231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polysaccharide degradation and synthesis by extremely thermophilic anaerobes.
    Vanfossen AL; Lewis DL; Nichols JD; Kelly RM
    Ann N Y Acad Sci; 2008 Mar; 1125():322-37. PubMed ID: 18378602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional and biochemical analysis of starch metabolism in the hyperthermophilic archaeon Pyrococcus furiosus.
    Lee HS; Shockley KR; Schut GJ; Conners SB; Montero CI; Johnson MR; Chou CJ; Bridger SL; Wigner N; Brehm SD; Jenney FE; Comfort DA; Kelly RM; Adams MW
    J Bacteriol; 2006 Mar; 188(6):2115-25. PubMed ID: 16513741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel energy metabolism in anaerobic hyperthermophilic archaea: a modified Embden-Meyerhof pathway.
    Sakuraba H; Ohshima T
    J Biosci Bioeng; 2002; 93(5):441-8. PubMed ID: 16233230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of a Toxin-Antitoxin Gene Cassette under High Hydrostatic Pressure Enables Markerless Gene Disruption in the Hyperthermophilic Archaeon
    Song Q; Li Z; Chen R; Ma X; Xiao X; Xu J
    Appl Environ Microbiol; 2019 Feb; 85(4):. PubMed ID: 30504216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divergence of the hyperthermophilic archaea Pyrococcus furiosus and P. horikoshii inferred from complete genomic sequences.
    Maeder DL; Weiss RB; Dunn DM; Cherry JL; González JM; DiRuggiero J; Robb FT
    Genetics; 1999 Aug; 152(4):1299-305. PubMed ID: 10430560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous culture as a tool for investigating the growth physiology of heterotrophic hyperthermophiles and extreme thermoacidophiles.
    Rinker KD; Han CJ; Kelly RM
    J Appl Microbiol; 1998 Dec; 85 Suppl 1():118S-127S. PubMed ID: 21182700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of TrmB and TrmB-like transcriptional regulators for sugar transport and metabolism in the hyperthermophilic archaeon Pyrococcus furiosus.
    Lee SJ; Surma M; Hausner W; Thomm M; Boos W
    Arch Microbiol; 2008 Sep; 190(3):247-56. PubMed ID: 18470695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga.
    Selig M; Xavier KB; Santos H; Schönheit P
    Arch Microbiol; 1997 Apr; 167(4):217-32. PubMed ID: 9075622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical diversity among sulfur-dependent, hyperthermophilic microorganisms.
    Adams MW
    FEMS Microbiol Rev; 1994 Oct; 15(2-3):261-77. PubMed ID: 7946471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between glycosyl hydrolase inventory and growth physiology of the hyperthermophile Pyrococcus furiosus on carbohydrate-based media.
    Driskill LE; Kusy K; Bauer MW; Kelly RM
    Appl Environ Microbiol; 1999 Mar; 65(3):893-7. PubMed ID: 10049838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The tungsten metallome of Pyrococcus furiosus.
    Sevcenco AM; Pinkse MW; Bol E; Krijger GC; Wolterbeek HT; Verhaert PD; Hagedoorn PL; Hagen WR
    Metallomics; 2009 Sep; 1(5):395-402. PubMed ID: 21305143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole-genome DNA microarray analysis of a hyperthermophile and an archaeon: Pyrococcus furiosus grown on carbohydrates or peptides.
    Schut GJ; Brehm SD; Datta S; Adams MW
    J Bacteriol; 2003 Jul; 185(13):3935-47. PubMed ID: 12813088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.