BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 9783166)

  • 1. Sugar utilization and its control in hyperthermophiles.
    de Vos WM; Kengen SW; Voorhorst WG; van der Oost J
    Extremophiles; 1998 Aug; 2(3):201-5. PubMed ID: 9783166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ferredoxin-dependent conversion of glyceraldehyde-3-phosphate in the hyperthermophilic archaeon Pyrococcus furiosus represents a novel site of glycolytic regulation.
    van der Oost J; Schut G; Kengen SW; Hagen WR; Thomm M; de Vos WM
    J Biol Chem; 1998 Oct; 273(43):28149-54. PubMed ID: 9774434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique sugar metabolism and novel enzymes of hyperthermophilic archaea.
    Sakuraba H; Goda S; Ohshima T
    Chem Rec; 2004; 3(5):281-7. PubMed ID: 14762828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering a hyperthermophilic archaeon for temperature-dependent product formation.
    Basen M; Sun J; Adams MW
    mBio; 2012; 3(2):e00053-12. PubMed ID: 22511351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulating Fermentation Pathways in the Hyperthermophilic Archaeon
    Lipscomb GL; Crowley AT; Nguyen DMN; Keller MW; O'Quinn HC; Tanwee TNN; Vailionis JL; Zhang K; Zhang Y; Kelly RM; Adams MWW
    Appl Environ Microbiol; 2023 Jun; 89(6):e0001223. PubMed ID: 37162365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of the glycolytic pathway in Pyrococcus furiosus and the implications for metabolic engineering.
    Straub CT; Schut G; Otten JK; Keller LM; Adams MWW; Kelly RM
    Extremophiles; 2020 Jul; 24(4):511-518. PubMed ID: 32415359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glyceraldehyde-3-phosphate ferredoxin oxidoreductase, a novel tungsten-containing enzyme with a potential glycolytic role in the hyperthermophilic archaeon Pyrococcus furiosus.
    Mukund S; Adams MW
    J Biol Chem; 1995 Apr; 270(15):8389-92. PubMed ID: 7721730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the TrmB-like protein, PF0124, a TGM-recognizing global transcriptional regulator of the hyperthermophilic archaeon Pyrococcus furiosus.
    Lee SJ; Surma M; Seitz S; Hausner W; Thomm M; Boos W
    Mol Microbiol; 2007 Jul; 65(2):305-18. PubMed ID: 17587231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polysaccharide degradation and synthesis by extremely thermophilic anaerobes.
    Vanfossen AL; Lewis DL; Nichols JD; Kelly RM
    Ann N Y Acad Sci; 2008 Mar; 1125():322-37. PubMed ID: 18378602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional and biochemical analysis of starch metabolism in the hyperthermophilic archaeon Pyrococcus furiosus.
    Lee HS; Shockley KR; Schut GJ; Conners SB; Montero CI; Johnson MR; Chou CJ; Bridger SL; Wigner N; Brehm SD; Jenney FE; Comfort DA; Kelly RM; Adams MW
    J Bacteriol; 2006 Mar; 188(6):2115-25. PubMed ID: 16513741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel energy metabolism in anaerobic hyperthermophilic archaea: a modified Embden-Meyerhof pathway.
    Sakuraba H; Ohshima T
    J Biosci Bioeng; 2002; 93(5):441-8. PubMed ID: 16233230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of a Toxin-Antitoxin Gene Cassette under High Hydrostatic Pressure Enables Markerless Gene Disruption in the Hyperthermophilic Archaeon
    Song Q; Li Z; Chen R; Ma X; Xiao X; Xu J
    Appl Environ Microbiol; 2019 Feb; 85(4):. PubMed ID: 30504216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divergence of the hyperthermophilic archaea Pyrococcus furiosus and P. horikoshii inferred from complete genomic sequences.
    Maeder DL; Weiss RB; Dunn DM; Cherry JL; González JM; DiRuggiero J; Robb FT
    Genetics; 1999 Aug; 152(4):1299-305. PubMed ID: 10430560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous culture as a tool for investigating the growth physiology of heterotrophic hyperthermophiles and extreme thermoacidophiles.
    Rinker KD; Han CJ; Kelly RM
    J Appl Microbiol; 1998 Dec; 85 Suppl 1():118S-127S. PubMed ID: 21182700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of TrmB and TrmB-like transcriptional regulators for sugar transport and metabolism in the hyperthermophilic archaeon Pyrococcus furiosus.
    Lee SJ; Surma M; Hausner W; Thomm M; Boos W
    Arch Microbiol; 2008 Sep; 190(3):247-56. PubMed ID: 18470695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga.
    Selig M; Xavier KB; Santos H; Schönheit P
    Arch Microbiol; 1997 Apr; 167(4):217-32. PubMed ID: 9075622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical diversity among sulfur-dependent, hyperthermophilic microorganisms.
    Adams MW
    FEMS Microbiol Rev; 1994 Oct; 15(2-3):261-77. PubMed ID: 7946471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between glycosyl hydrolase inventory and growth physiology of the hyperthermophile Pyrococcus furiosus on carbohydrate-based media.
    Driskill LE; Kusy K; Bauer MW; Kelly RM
    Appl Environ Microbiol; 1999 Mar; 65(3):893-7. PubMed ID: 10049838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The tungsten metallome of Pyrococcus furiosus.
    Sevcenco AM; Pinkse MW; Bol E; Krijger GC; Wolterbeek HT; Verhaert PD; Hagedoorn PL; Hagen WR
    Metallomics; 2009 Sep; 1(5):395-402. PubMed ID: 21305143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole-genome DNA microarray analysis of a hyperthermophile and an archaeon: Pyrococcus furiosus grown on carbohydrates or peptides.
    Schut GJ; Brehm SD; Datta S; Adams MW
    J Bacteriol; 2003 Jul; 185(13):3935-47. PubMed ID: 12813088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.