These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 9783166)
21. Insights into the metabolism of elemental sulfur by the hyperthermophilic archaeon Pyrococcus furiosus: characterization of a coenzyme A- dependent NAD(P)H sulfur oxidoreductase. Schut GJ; Bridger SL; Adams MW J Bacteriol; 2007 Jun; 189(12):4431-41. PubMed ID: 17449625 [TBL] [Abstract][Full Text] [Related]
22. Hyperthermophilic Carbamate Kinase Stability and Anabolic Hennessy JE; Latter MJ; Fazelinejad S; Philbrook A; Bartkus DM; Kim HK; Onagi H; Oakeshott JG; Scott C; Alissandratos A; Easton CJ Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150502 [TBL] [Abstract][Full Text] [Related]
23. Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Bräsen C; Esser D; Rauch B; Siebers B Microbiol Mol Biol Rev; 2014 Mar; 78(1):89-175. PubMed ID: 24600042 [TBL] [Abstract][Full Text] [Related]
24. Oxidative stress protection and the repair response to hydrogen peroxide in the hyperthermophilic archaeon Pyrococcus furiosus and in related species. Strand KR; Sun C; Li T; Jenney FE; Schut GJ; Adams MW Arch Microbiol; 2010 Jun; 192(6):447-59. PubMed ID: 20379702 [TBL] [Abstract][Full Text] [Related]
25. Key role for sulfur in peptide metabolism and in regulation of three hydrogenases in the hyperthermophilic archaeon Pyrococcus furiosus. Adams MW; Holden JF; Menon AL; Schut GJ; Grunden AM; Hou C; Hutchins AM; Jenney FE; Kim C; Ma K; Pan G; Roy R; Sapra R; Story SV; Verhagen MF J Bacteriol; 2001 Jan; 183(2):716-24. PubMed ID: 11133967 [TBL] [Abstract][Full Text] [Related]
26. N-Linked Glycans Are Assembled on Highly Reduced Dolichol Phosphate Carriers in the Hyperthermophilic Archaea Pyrococcus furiosus. Chang MM; Imperiali B; Eichler J; Guan Z PLoS One; 2015; 10(6):e0130482. PubMed ID: 26098850 [TBL] [Abstract][Full Text] [Related]
27. Complete saccharification of β-glucan using hyperthermophilic endocellulase and β-glucosidase from Pyrococcus furiosus. Kataoka M; Ishikawa K Biosci Biotechnol Biochem; 2014; 78(9):1537-41. PubMed ID: 25209501 [TBL] [Abstract][Full Text] [Related]
28. Temperature-dependent acetoin production by Pyrococcus furiosus is catalyzed by a biosynthetic acetolactate synthase and its deletion improves ethanol production. Nguyen DMN; Lipscomb GL; Schut GJ; Vaccaro BJ; Basen M; Kelly RM; Adams MWW Metab Eng; 2016 Mar; 34():71-79. PubMed ID: 26721637 [TBL] [Abstract][Full Text] [Related]
29. Combined transcriptomics-metabolomics profiling of the heat shock response in the hyperthermophilic archaeon Pyrococcus furiosus. Esteves AM; Graça G; Peyriga L; Torcato IM; Borges N; Portais JC; Santos H Extremophiles; 2019 Jan; 23(1):101-118. PubMed ID: 30430272 [TBL] [Abstract][Full Text] [Related]
30. Synergistic interactions among beta-laminarinase, beta-1,4-glucanase, and beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus during hydrolysis of beta-1,4-, beta-1,3-, and mixed-linked polysaccharides. Driskill LE; Bauer MW; Kelly RM Biotechnol Bioeng; 1999; 66(1):51-60. PubMed ID: 10556794 [TBL] [Abstract][Full Text] [Related]
31. Optimizing Strategies for Bio-Based Ethanol Production Using Genome-Scale Metabolic Modeling of the Hyperthermophilic Archaeon, Pyrococcus furiosus. Vailionis JL; Zhao W; Zhang K; Rodionov DA; Lipscomb GL; Tanwee TNN; O'Quinn HC; Bing RG; Kelly RM; Adams MWW; Zhang Y Appl Environ Microbiol; 2023 Jun; 89(6):e0056323. PubMed ID: 37289085 [TBL] [Abstract][Full Text] [Related]
32. Cold shock of a hyperthermophilic archaeon: Pyrococcus furiosus exhibits multiple responses to a suboptimal growth temperature with a key role for membrane-bound glycoproteins. Weinberg MV; Schut GJ; Brehm S; Datta S; Adams MW J Bacteriol; 2005 Jan; 187(1):336-48. PubMed ID: 15601718 [TBL] [Abstract][Full Text] [Related]
33. The biochemical diversity of life near and above 100°C in marine environments. Adams MW J Appl Microbiol; 1998 Dec; 85 Suppl 1():108S-117S. PubMed ID: 21182699 [TBL] [Abstract][Full Text] [Related]
34. Effect of glucose, maltose, soluble starch, and CO2 on the growth of the hyperthermophilic archaeon Pyrococcus furiosus. Biller KF; Kato I; Märkl H Extremophiles; 2002 Apr; 6(2):161-6. PubMed ID: 12013437 [TBL] [Abstract][Full Text] [Related]
35. Mechanism of oxygen detoxification by the surprisingly oxygen-tolerant hyperthermophilic archaeon, Pyrococcus furiosus. Thorgersen MP; Stirrett K; Scott RA; Adams MW Proc Natl Acad Sci U S A; 2012 Nov; 109(45):18547-52. PubMed ID: 23093671 [TBL] [Abstract][Full Text] [Related]
36. Impact of substrate glycoside linkage and elemental sulfur on bioenergetics of and hydrogen production by the hyperthermophilic archaeon Pyrococcus furiosus. Chou CJ; Shockley KR; Conners SB; Lewis DL; Comfort DA; Adams MW; Kelly RM Appl Environ Microbiol; 2007 Nov; 73(21):6842-53. PubMed ID: 17827328 [TBL] [Abstract][Full Text] [Related]
37. Differential signal transduction via TrmB, a sugar sensing transcriptional repressor of Pyrococcus furiosus. Lee SJ; Surma M; Seitz S; Hausner W; Thomm M; Boos W Mol Microbiol; 2007 Jun; 64(6):1499-505. PubMed ID: 17504272 [TBL] [Abstract][Full Text] [Related]
39. Evolution of mal ABC transporter operons in the Thermococcales and Thermotogales. Noll KM; Lapierre P; Gogarten JP; Nanavati DM BMC Evol Biol; 2008 Jan; 8():7. PubMed ID: 18197971 [TBL] [Abstract][Full Text] [Related]
40. Identification of a glycolytic regulon in the archaea Pyrococcus and Thermococcus. van de Werken HJ; Verhees CH; Akerboom J; de Vos WM; van der Oost J FEMS Microbiol Lett; 2006 Jul; 260(1):69-76. PubMed ID: 16790020 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]