These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 9783217)

  • 1. Prediction of signal peptides and signal anchors by a hidden Markov model.
    Nielsen H; Krogh A
    Proc Int Conf Intell Syst Mol Biol; 1998; 6():122-30. PubMed ID: 9783217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved prediction of signal peptides: SignalP 3.0.
    Bendtsen JD; Nielsen H; von Heijne G; Brunak S
    J Mol Biol; 2004 Jul; 340(4):783-95. PubMed ID: 15223320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites.
    Nielsen H; Engelbrecht J; Brunak S; von Heijne G
    Int J Neural Syst; 1997; 8(5-6):581-99. PubMed ID: 10065837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of lipoprotein signal peptides in Gram-positive bacteria with a Hidden Markov Model.
    Bagos PG; Tsirigos KD; Liakopoulos TD; Hamodrakas SJ
    J Proteome Res; 2008 Dec; 7(12):5082-93. PubMed ID: 19367716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites.
    Nielsen H; Engelbrecht J; Brunak S; von Heijne G
    Protein Eng; 1997 Jan; 10(1):1-6. PubMed ID: 9051728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning approaches for the prediction of signal peptides and other protein sorting signals.
    Nielsen H; Brunak S; von Heijne G
    Protein Eng; 1999 Jan; 12(1):3-9. PubMed ID: 10065704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of signal peptide prediction algorithms for identification of mycobacterial signal peptides using sequence data from proteomic methods.
    Leversen NA; de Souza GA; Målen H; Prasad S; Jonassen I; Wiker HG
    Microbiology (Reading); 2009 Jul; 155(Pt 7):2375-2383. PubMed ID: 19389770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of signal peptides in protein sequences by neural networks.
    Plewczynski D; Slabinski L; Ginalski K; Rychlewski L
    Acta Biochim Pol; 2008; 55(2):261-7. PubMed ID: 18506221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational differentiation of N-terminal signal peptides and transmembrane helices.
    Yuan Z; Davis MJ; Zhang F; Teasdale RD
    Biochem Biophys Res Commun; 2003 Dec; 312(4):1278-83. PubMed ID: 14652012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method.
    Bagos PG; Liakopoulos TD; Hamodrakas SJ
    BMC Bioinformatics; 2005 Jan; 6():7. PubMed ID: 15647112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined prediction of Tat and Sec signal peptides with hidden Markov models.
    Bagos PG; Nikolaou EP; Liakopoulos TD; Tsirigos KD
    Bioinformatics; 2010 Nov; 26(22):2811-7. PubMed ID: 20847219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal peptide prediction based on analysis of experimentally verified cleavage sites.
    Zhang Z; Henzel WJ
    Protein Sci; 2004 Oct; 13(10):2819-24. PubMed ID: 15340161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined prediction of transmembrane topology and signal peptide of beta-barrel proteins: using a hidden Markov model and genetic algorithms.
    Zou L; Wang Z; Wang Y; Hu F
    Comput Biol Med; 2010 Jul; 40(7):621-8. PubMed ID: 20488436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hidden Markov model for predicting transmembrane helices in protein sequences.
    Sonnhammer EL; von Heijne G; Krogh A
    Proc Int Conf Intell Syst Mol Biol; 1998; 6():175-82. PubMed ID: 9783223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CW-PRED: Prediction of C-terminal surface anchoring sorting signals in bacteria and Archaea.
    Chatziargyri AG; Stasi EA; Tsirigos KI; Litou ZI; Iconomidou VA; Bagos PG
    J Bioinform Comput Biol; 2024 Aug; 22(4):2450021. PubMed ID: 39215524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of signal peptides in archaea.
    Bagos PG; Tsirigos KD; Plessas SK; Liakopoulos TD; Hamodrakas SJ
    Protein Eng Des Sel; 2009 Jan; 22(1):27-35. PubMed ID: 18988691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signal peptide discrimination and cleavage site identification using SVM and NN.
    Kazemian HB; Yusuf SA; White K
    Comput Biol Med; 2014 Feb; 45():98-110. PubMed ID: 24480169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis and prediction of leucine-rich nuclear export signals.
    la Cour T; Kiemer L; Mølgaard A; Gupta R; Skriver K; Brunak S
    Protein Eng Des Sel; 2004 Jun; 17(6):527-36. PubMed ID: 15314210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Support vector machine prediction of signal peptide cleavage site using a new class of kernels for strings.
    Vert JP
    Pac Symp Biocomput; 2002; ():649-60. PubMed ID: 11928516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exopolysaccharide-associated protein sorting in environmental organisms: the PEP-CTERM/EpsH system. Application of a novel phylogenetic profiling heuristic.
    Haft DH; Paulsen IT; Ward N; Selengut JD
    BMC Biol; 2006 Aug; 4():29. PubMed ID: 16930487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.