BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 9783227)

  • 1. A map of the protein space--an automatic hierarchical classification of all protein sequences.
    Yona G; Linial N; Tishby N; Linial M
    Proc Int Conf Intell Syst Mol Biol; 1998; 6():212-21. PubMed ID: 9783227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ProtoMap: automatic classification of protein sequences, a hierarchy of protein families, and local maps of the protein space.
    Yona G; Linial N; Linial M
    Proteins; 1999 Nov; 37(3):360-78. PubMed ID: 10591097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ProtoMap: automatic classification of protein sequences and hierarchy of protein families.
    Yona G; Linial N; Linial M
    Nucleic Acids Res; 2000 Jan; 28(1):49-55. PubMed ID: 10592179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ProClust: improved clustering of protein sequences with an extended graph-based approach.
    Pipenbacher P; Schliep A; Schneckener S; Schönhuth A; Schomburg D; Schrader R
    Bioinformatics; 2002; 18 Suppl 2():S182-91. PubMed ID: 12386002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-over between discrete and continuous protein structure space: insights into automatic classification and networks of protein structures.
    Pascual-García A; Abia D; Ortiz AR; Bastolla U
    PLoS Comput Biol; 2009 Mar; 5(3):e1000331. PubMed ID: 19325884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ProtoNet: hierarchical classification of the protein space.
    Sasson O; Vaaknin A; Fleischer H; Portugaly E; Bilu Y; Linial N; Linial M
    Nucleic Acids Res; 2003 Jan; 31(1):348-52. PubMed ID: 12520020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the quality of tree-based protein classification.
    Lazareva-Ulitsky B; Diemer K; Thomas PD
    Bioinformatics; 2005 May; 21(9):1876-90. PubMed ID: 15647305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global self-organization of all known protein sequences reveals inherent biological signatures.
    Linial M; Linial N; Tishby N; Yona G
    J Mol Biol; 1997 May; 268(2):539-56. PubMed ID: 9159489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clustering protein sequences--structure prediction by transitive homology.
    Bolten E; Schliep A; Schneckener S; Schomburg D; Schrader R
    Bioinformatics; 2001 Oct; 17(10):935-41. PubMed ID: 11673238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A graph-based clustering method for a large set of sequences using a graph partitioning algorithm.
    Kawaji H; Yamaguchi Y; Matsuda H; Hashimoto A
    Genome Inform; 2001; 12():93-102. PubMed ID: 11791228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated protein sequence database classification. I. Integration of compositional similarity search, local similarity search, and multiple sequence alignment.
    Gracy J; Argos P
    Bioinformatics; 1998; 14(2):164-73. PubMed ID: 9545449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ProtoNet 4.0: a hierarchical classification of one million protein sequences.
    Kaplan N; Sasson O; Inbar U; Friedlich M; Fromer M; Fleischer H; Portugaly E; Linial N; Linial M
    Nucleic Acids Res; 2005 Jan; 33(Database issue):D216-8. PubMed ID: 15608180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards a complete map of the protein space based on a unified sequence and structure analysis of all known proteins.
    Yona G; Levitt M
    Proc Int Conf Intell Syst Mol Biol; 2000; 8():395-406. PubMed ID: 10977100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The metric space of proteins-comparative study of clustering algorithms.
    Sasson O; Linial N; Linial M
    Bioinformatics; 2002; 18 Suppl 1():S14-21. PubMed ID: 12169526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of BLAST-based edge-weighting metrics used for homology inference with the Markov Clustering algorithm.
    Gibbons TR; Mount SM; Cooper ED; Delwiche CF
    BMC Bioinformatics; 2015 Jul; 16():218. PubMed ID: 26160651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic classification of protein structures relying on similarities between alignments.
    Santini G; Soldano H; Pothier J
    BMC Bioinformatics; 2012 Sep; 13():233. PubMed ID: 22974051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards automatic clustering of protein sequences.
    Yang J; Wang W
    Proc IEEE Comput Soc Bioinform Conf; 2002; 1():175-86. PubMed ID: 15838134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal classification of protein sequences and selection of representative sets from multiple alignments: application to homologous families and lessons for structural genomics.
    May AC
    Protein Eng; 2001 Apr; 14(4):209-17. PubMed ID: 11391012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graph-based clustering for finding distant relationships in a large set of protein sequences.
    Kawaji H; Takenaka Y; Matsuda H
    Bioinformatics; 2004 Jan; 20(2):243-52. PubMed ID: 14734316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast model-based protein homology detection without alignment.
    Hochreiter S; Heusel M; Obermayer K
    Bioinformatics; 2007 Jul; 23(14):1728-36. PubMed ID: 17488755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.