These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 9783227)
1. A map of the protein space--an automatic hierarchical classification of all protein sequences. Yona G; Linial N; Tishby N; Linial M Proc Int Conf Intell Syst Mol Biol; 1998; 6():212-21. PubMed ID: 9783227 [TBL] [Abstract][Full Text] [Related]
2. ProtoMap: automatic classification of protein sequences, a hierarchy of protein families, and local maps of the protein space. Yona G; Linial N; Linial M Proteins; 1999 Nov; 37(3):360-78. PubMed ID: 10591097 [TBL] [Abstract][Full Text] [Related]
3. ProtoMap: automatic classification of protein sequences and hierarchy of protein families. Yona G; Linial N; Linial M Nucleic Acids Res; 2000 Jan; 28(1):49-55. PubMed ID: 10592179 [TBL] [Abstract][Full Text] [Related]
4. ProClust: improved clustering of protein sequences with an extended graph-based approach. Pipenbacher P; Schliep A; Schneckener S; Schönhuth A; Schomburg D; Schrader R Bioinformatics; 2002; 18 Suppl 2():S182-91. PubMed ID: 12386002 [TBL] [Abstract][Full Text] [Related]
5. Cross-over between discrete and continuous protein structure space: insights into automatic classification and networks of protein structures. Pascual-García A; Abia D; Ortiz AR; Bastolla U PLoS Comput Biol; 2009 Mar; 5(3):e1000331. PubMed ID: 19325884 [TBL] [Abstract][Full Text] [Related]
6. ProtoNet: hierarchical classification of the protein space. Sasson O; Vaaknin A; Fleischer H; Portugaly E; Bilu Y; Linial N; Linial M Nucleic Acids Res; 2003 Jan; 31(1):348-52. PubMed ID: 12520020 [TBL] [Abstract][Full Text] [Related]
7. On the quality of tree-based protein classification. Lazareva-Ulitsky B; Diemer K; Thomas PD Bioinformatics; 2005 May; 21(9):1876-90. PubMed ID: 15647305 [TBL] [Abstract][Full Text] [Related]
8. Global self-organization of all known protein sequences reveals inherent biological signatures. Linial M; Linial N; Tishby N; Yona G J Mol Biol; 1997 May; 268(2):539-56. PubMed ID: 9159489 [TBL] [Abstract][Full Text] [Related]
9. Clustering protein sequences--structure prediction by transitive homology. Bolten E; Schliep A; Schneckener S; Schomburg D; Schrader R Bioinformatics; 2001 Oct; 17(10):935-41. PubMed ID: 11673238 [TBL] [Abstract][Full Text] [Related]
10. A graph-based clustering method for a large set of sequences using a graph partitioning algorithm. Kawaji H; Yamaguchi Y; Matsuda H; Hashimoto A Genome Inform; 2001; 12():93-102. PubMed ID: 11791228 [TBL] [Abstract][Full Text] [Related]
11. Automated protein sequence database classification. I. Integration of compositional similarity search, local similarity search, and multiple sequence alignment. Gracy J; Argos P Bioinformatics; 1998; 14(2):164-73. PubMed ID: 9545449 [TBL] [Abstract][Full Text] [Related]
12. ProtoNet 4.0: a hierarchical classification of one million protein sequences. Kaplan N; Sasson O; Inbar U; Friedlich M; Fromer M; Fleischer H; Portugaly E; Linial N; Linial M Nucleic Acids Res; 2005 Jan; 33(Database issue):D216-8. PubMed ID: 15608180 [TBL] [Abstract][Full Text] [Related]
13. Towards a complete map of the protein space based on a unified sequence and structure analysis of all known proteins. Yona G; Levitt M Proc Int Conf Intell Syst Mol Biol; 2000; 8():395-406. PubMed ID: 10977100 [TBL] [Abstract][Full Text] [Related]
14. The metric space of proteins-comparative study of clustering algorithms. Sasson O; Linial N; Linial M Bioinformatics; 2002; 18 Suppl 1():S14-21. PubMed ID: 12169526 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of BLAST-based edge-weighting metrics used for homology inference with the Markov Clustering algorithm. Gibbons TR; Mount SM; Cooper ED; Delwiche CF BMC Bioinformatics; 2015 Jul; 16():218. PubMed ID: 26160651 [TBL] [Abstract][Full Text] [Related]
16. Automatic classification of protein structures relying on similarities between alignments. Santini G; Soldano H; Pothier J BMC Bioinformatics; 2012 Sep; 13():233. PubMed ID: 22974051 [TBL] [Abstract][Full Text] [Related]
17. Towards automatic clustering of protein sequences. Yang J; Wang W Proc IEEE Comput Soc Bioinform Conf; 2002; 1():175-86. PubMed ID: 15838134 [TBL] [Abstract][Full Text] [Related]
18. Optimal classification of protein sequences and selection of representative sets from multiple alignments: application to homologous families and lessons for structural genomics. May AC Protein Eng; 2001 Apr; 14(4):209-17. PubMed ID: 11391012 [TBL] [Abstract][Full Text] [Related]
19. Graph-based clustering for finding distant relationships in a large set of protein sequences. Kawaji H; Takenaka Y; Matsuda H Bioinformatics; 2004 Jan; 20(2):243-52. PubMed ID: 14734316 [TBL] [Abstract][Full Text] [Related]
20. Fast model-based protein homology detection without alignment. Hochreiter S; Heusel M; Obermayer K Bioinformatics; 2007 Jul; 23(14):1728-36. PubMed ID: 17488755 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]