These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 9783264)
1. Membrane-inserted colicin E1 channel domain: a topological survey by fluorescence quenching suggests that model membrane thickness affects membrane penetration. Malenbaum SE; Merrill AR; London E J Nat Toxins; 1998 Oct; 7(3):269-90. PubMed ID: 9783264 [TBL] [Abstract][Full Text] [Related]
2. Evidence for the amphipathic nature and tilted topology of helices 4 and 5 in the closed state of the colicin E1 channel. Ho D; Merrill AR Biochemistry; 2009 Feb; 48(6):1369-80. PubMed ID: 19159330 [TBL] [Abstract][Full Text] [Related]
3. Toward elucidating the membrane topology of helix two of the colicin E1 channel domain. White D; Musse AA; Wang J; London E; Merrill AR J Biol Chem; 2006 Oct; 281(43):32375-84. PubMed ID: 16854987 [TBL] [Abstract][Full Text] [Related]
4. Membrane topography of the T domain of diphtheria toxin probed with single tryptophan mutants. Malenbaum SE; Collier RJ; London E Biochemistry; 1998 Dec; 37(51):17915-22. PubMed ID: 9922159 [TBL] [Abstract][Full Text] [Related]
5. Mapping the membrane topology of the closed state of the colicin E1 channel. Palmer LR; Merrill AR J Biol Chem; 1994 Feb; 269(6):4187-93. PubMed ID: 7508440 [TBL] [Abstract][Full Text] [Related]
6. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association. Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682 [TBL] [Abstract][Full Text] [Related]
7. Topography of diphtheria toxin A chain inserted into lipid vesicles. Hayashibara M; London E Biochemistry; 2005 Feb; 44(6):2183-96. PubMed ID: 15697244 [TBL] [Abstract][Full Text] [Related]
8. Using a novel dual fluorescence quenching assay for measurement of tryptophan depth within lipid bilayers to determine hydrophobic alpha-helix locations within membranes. Caputo GA; London E Biochemistry; 2003 Mar; 42(11):3265-74. PubMed ID: 12641458 [TBL] [Abstract][Full Text] [Related]
9. Tilted, extended, and lying in wait: the membrane-bound topology of residues Lys-381-Ser-405 of the colicin E1 channel domain. Wei Z; White D; Wang J; Musse AA; Merrill AR Biochemistry; 2007 May; 46(20):6074-85. PubMed ID: 17455912 [TBL] [Abstract][Full Text] [Related]
10. Identification of shallow and deep membrane-penetrating forms of diphtheria toxin T domain that are regulated by protein concentration and bilayer width. Wang Y; Malenbaum SE; Kachel K; Zhan H; Collier RJ; London E J Biol Chem; 1997 Oct; 272(40):25091-8. PubMed ID: 9312118 [TBL] [Abstract][Full Text] [Related]
11. Scanning the membrane-bound conformation of helix 1 in the colicin E1 channel domain by site-directed fluorescence labeling. Musse AA; Wang J; Deleon GP; Prentice GA; London E; Merrill AR J Biol Chem; 2006 Jan; 281(2):885-95. PubMed ID: 16299381 [TBL] [Abstract][Full Text] [Related]
12. Topography of helices 5-7 in membrane-inserted diphtheria toxin T domain: identification and insertion boundaries of two hydrophobic sequences that do not form a stable transmembrane hairpin. Rosconi MP; London E J Biol Chem; 2002 May; 277(19):16517-27. PubMed ID: 11859081 [TBL] [Abstract][Full Text] [Related]
13. The effects of polar and/or ionizable residues in the core and flanking regions of hydrophobic helices on transmembrane conformation and oligomerization. Lew S; Ren J; London E Biochemistry; 2000 Aug; 39(32):9632-40. PubMed ID: 10933779 [TBL] [Abstract][Full Text] [Related]
14. Control of the transmembrane orientation and interhelical interactions within membranes by hydrophobic helix length. Ren J; Lew S; Wang J; London E Biochemistry; 1999 May; 38(18):5905-12. PubMed ID: 10231543 [TBL] [Abstract][Full Text] [Related]
15. Acrylamide quenching of the intrinsic fluorescence of tryptophan residues genetically engineered into the soluble colicin E1 channel peptide. Structural characterization of the insertion-competent state. Merrill AR; Palmer LR; Szabo AG Biochemistry; 1993 Jul; 32(27):6974-81. PubMed ID: 7687465 [TBL] [Abstract][Full Text] [Related]
16. Use of Trp mutations to evaluate the conformational behavior and membrane insertion of A and B chains in whole diphtheria toxin. Wang Y; Kachel K; Pablo L; London E Biochemistry; 1997 Dec; 36(51):16300-8. PubMed ID: 9405065 [TBL] [Abstract][Full Text] [Related]
17. The role of tryptophan residues in an integral membrane protein: diacylglycerol kinase. Clark EH; East JM; Lee AG Biochemistry; 2003 Sep; 42(37):11065-73. PubMed ID: 12974643 [TBL] [Abstract][Full Text] [Related]
18. Harmonic analysis of the fluorescence response of bimane adducts of colicin E1 at helices 6, 7, and 10. Ho D; Lugo MR; Merrill AR J Biol Chem; 2013 Feb; 288(7):5136-48. PubMed ID: 23264635 [TBL] [Abstract][Full Text] [Related]
19. Determination of membrane protein topology by red-edge excitation shift analysis: application to the membrane-bound colicin E1 channel peptide. Tory MC; Merrill AR Biochim Biophys Acta; 2002 Aug; 1564(2):435-48. PubMed ID: 12175927 [TBL] [Abstract][Full Text] [Related]
20. Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers. Kim Y; Valentine K; Opella SJ; Schendel SL; Cramer WA Protein Sci; 1998 Feb; 7(2):342-8. PubMed ID: 9521110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]