These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 9783480)
1. Unequal divisions at the third cleavage increase the number of primary mesenchyme cells in sea urchin embryos. Kominami T; Takaichi M Dev Growth Differ; 1998 Oct; 40(5):545-53. PubMed ID: 9783480 [TBL] [Abstract][Full Text] [Related]
2. Signals from primary mesenchyme cells regulate endoderm differentiation in the sea urchin embryo. Hamada M; Kiyomoto M Dev Growth Differ; 2003 Aug; 45(4):339-50. PubMed ID: 12950275 [TBL] [Abstract][Full Text] [Related]
3. A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo. McClay DR; Peterson RE; Range RC; Winter-Vann AM; Ferkowicz MJ Development; 2000 Dec; 127(23):5113-22. PubMed ID: 11060237 [TBL] [Abstract][Full Text] [Related]
4. The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo. Hodor PG; Ettensohn CA Dev Biol; 1998 Jul; 199(1):111-24. PubMed ID: 9676196 [TBL] [Abstract][Full Text] [Related]
5. Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells. Ettensohn CA; Ruffins SW Development; 1993 Apr; 117(4):1275-85. PubMed ID: 8404530 [TBL] [Abstract][Full Text] [Related]
6. Establishment of pigment cell lineage in embryos of the sea urchin, Hemicentrotus pulcherrimus. Kominami T Dev Growth Differ; 2000 Feb; 42(1):41-51. PubMed ID: 10831042 [TBL] [Abstract][Full Text] [Related]
7. Primary mesenchyme cell-ring pattern formation in 2D-embryos of the sea urchin. Katow H; Nakajima Y; Uemura I Dev Growth Differ; 2000 Feb; 42(1):9-17. PubMed ID: 10831039 [TBL] [Abstract][Full Text] [Related]
8. Early development of the feeding larva of the sea urchin Heliocidaris tuberculata: role of the small micromeres. Morris VB; Kable E; Koop D; Cisternas P; Byrne M Dev Genes Evol; 2019 Jan; 229(1):1-12. PubMed ID: 30446824 [TBL] [Abstract][Full Text] [Related]
9. Specification of secondary mesenchyme-derived cells in relation to the dorso-ventral axis in sea urchin blastulae. Kominami T; Takata H Dev Growth Differ; 2003 Apr; 45(2):129-42. PubMed ID: 12752501 [TBL] [Abstract][Full Text] [Related]
10. Dependence of sea urchin primary mesenchyme cell migration on xyloside- and sulfate-sensitive cell surface-associated components. Lane MC; Solursh M Dev Biol; 1988 May; 127(1):78-87. PubMed ID: 3360213 [TBL] [Abstract][Full Text] [Related]
11. Ca(2+) in specification of vegetal cell fate in early sea urchin embryos. Yazaki I J Exp Biol; 2001 Mar; 204(Pt 5):823-34. PubMed ID: 11171406 [TBL] [Abstract][Full Text] [Related]
12. Complete regulation of development throughout metamorphosis of sea urchin embryos devoid of macromeres. Amemiya S Dev Growth Differ; 1996 Oct; 38(5):465-476. PubMed ID: 37281784 [TBL] [Abstract][Full Text] [Related]
13. Unequal cleavage and the differentiation of echinoid primary mesenchyme. Langelan RE; Whiteley AH Dev Biol; 1985 Jun; 109(2):464-75. PubMed ID: 3996759 [TBL] [Abstract][Full Text] [Related]
14. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages. Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746 [TBL] [Abstract][Full Text] [Related]
15. The origin of skeleton forming cells in the sea urchin embryo. Urben S; Nislow C; Spiegel M Rouxs Arch Dev Biol; 1988 Jan; 197(8):447-456. PubMed ID: 28305470 [TBL] [Abstract][Full Text] [Related]
16. Mechanisms of calcium elevation in the micromeres of sea urchin embryos. Yazaki I; Abe M; Santella L; Koyama Y Biol Cell; 2004 Mar; 96(2):153-67. PubMed ID: 15050370 [TBL] [Abstract][Full Text] [Related]
17. Analysis of competence in cultured sea urchin micromeres. Page L; Benson S Exp Cell Res; 1992 Dec; 203(2):305-11. PubMed ID: 1459196 [TBL] [Abstract][Full Text] [Related]
18. The control of foxN2/3 expression in sea urchin embryos and its function in the skeletogenic gene regulatory network. Rho HK; McClay DR Development; 2011 Mar; 138(5):937-45. PubMed ID: 21303847 [TBL] [Abstract][Full Text] [Related]
19. Activation of pmar1 controls specification of micromeres in the sea urchin embryo. Oliveri P; Davidson EH; McClay DR Dev Biol; 2003 Jun; 258(1):32-43. PubMed ID: 12781680 [TBL] [Abstract][Full Text] [Related]
20. Cell lineage conversion in the sea urchin embryo. Ettensohn CA; McClay DR Dev Biol; 1988 Feb; 125(2):396-409. PubMed ID: 3338620 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]