BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 9783480)

  • 1. Unequal divisions at the third cleavage increase the number of primary mesenchyme cells in sea urchin embryos.
    Kominami T; Takaichi M
    Dev Growth Differ; 1998 Oct; 40(5):545-53. PubMed ID: 9783480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signals from primary mesenchyme cells regulate endoderm differentiation in the sea urchin embryo.
    Hamada M; Kiyomoto M
    Dev Growth Differ; 2003 Aug; 45(4):339-50. PubMed ID: 12950275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo.
    McClay DR; Peterson RE; Range RC; Winter-Vann AM; Ferkowicz MJ
    Development; 2000 Dec; 127(23):5113-22. PubMed ID: 11060237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo.
    Hodor PG; Ettensohn CA
    Dev Biol; 1998 Jul; 199(1):111-24. PubMed ID: 9676196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells.
    Ettensohn CA; Ruffins SW
    Development; 1993 Apr; 117(4):1275-85. PubMed ID: 8404530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment of pigment cell lineage in embryos of the sea urchin, Hemicentrotus pulcherrimus.
    Kominami T
    Dev Growth Differ; 2000 Feb; 42(1):41-51. PubMed ID: 10831042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary mesenchyme cell-ring pattern formation in 2D-embryos of the sea urchin.
    Katow H; Nakajima Y; Uemura I
    Dev Growth Differ; 2000 Feb; 42(1):9-17. PubMed ID: 10831039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early development of the feeding larva of the sea urchin Heliocidaris tuberculata: role of the small micromeres.
    Morris VB; Kable E; Koop D; Cisternas P; Byrne M
    Dev Genes Evol; 2019 Jan; 229(1):1-12. PubMed ID: 30446824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specification of secondary mesenchyme-derived cells in relation to the dorso-ventral axis in sea urchin blastulae.
    Kominami T; Takata H
    Dev Growth Differ; 2003 Apr; 45(2):129-42. PubMed ID: 12752501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of sea urchin primary mesenchyme cell migration on xyloside- and sulfate-sensitive cell surface-associated components.
    Lane MC; Solursh M
    Dev Biol; 1988 May; 127(1):78-87. PubMed ID: 3360213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca(2+) in specification of vegetal cell fate in early sea urchin embryos.
    Yazaki I
    J Exp Biol; 2001 Mar; 204(Pt 5):823-34. PubMed ID: 11171406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete regulation of development throughout metamorphosis of sea urchin embryos devoid of macromeres.
    Amemiya S
    Dev Growth Differ; 1996 Oct; 38(5):465-476. PubMed ID: 37281784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unequal cleavage and the differentiation of echinoid primary mesenchyme.
    Langelan RE; Whiteley AH
    Dev Biol; 1985 Jun; 109(2):464-75. PubMed ID: 3996759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The origin of skeleton forming cells in the sea urchin embryo.
    Urben S; Nislow C; Spiegel M
    Rouxs Arch Dev Biol; 1988 Jan; 197(8):447-456. PubMed ID: 28305470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of calcium elevation in the micromeres of sea urchin embryos.
    Yazaki I; Abe M; Santella L; Koyama Y
    Biol Cell; 2004 Mar; 96(2):153-67. PubMed ID: 15050370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of competence in cultured sea urchin micromeres.
    Page L; Benson S
    Exp Cell Res; 1992 Dec; 203(2):305-11. PubMed ID: 1459196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The control of foxN2/3 expression in sea urchin embryos and its function in the skeletogenic gene regulatory network.
    Rho HK; McClay DR
    Development; 2011 Mar; 138(5):937-45. PubMed ID: 21303847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of pmar1 controls specification of micromeres in the sea urchin embryo.
    Oliveri P; Davidson EH; McClay DR
    Dev Biol; 2003 Jun; 258(1):32-43. PubMed ID: 12781680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell lineage conversion in the sea urchin embryo.
    Ettensohn CA; McClay DR
    Dev Biol; 1988 Feb; 125(2):396-409. PubMed ID: 3338620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.