These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9783480)

  • 21. A regulatory gene network that directs micromere specification in the sea urchin embryo.
    Oliveri P; Carrick DM; Davidson EH
    Dev Biol; 2002 Jun; 246(1):209-28. PubMed ID: 12027443
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Size regulation and morphogenesis: a cellular analysis of skeletogenesis in the sea urchin embryo.
    Ettensohn CA; Malinda KM
    Development; 1993 Sep; 119(1):155-67. PubMed ID: 8275852
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Snail repressor is required for PMC ingression in the sea urchin embryo.
    Wu SY; McClay DR
    Development; 2007 Mar; 134(6):1061-70. PubMed ID: 17287249
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lineage tracing shows that cell size asymmetries predict the dorsoventral axis in the sea star embryo.
    Barone V; Byrne M; Lyons DC
    BMC Biol; 2022 Aug; 20(1):179. PubMed ID: 35971116
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks.
    Amore G; Yavrouian RG; Peterson KJ; Ransick A; McClay DR; Davidson EH
    Dev Biol; 2003 Sep; 261(1):55-81. PubMed ID: 12941621
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins.
    Poon J; Fries A; Wessel GM; Yajima M
    Nat Commun; 2019 Aug; 10(1):3779. PubMed ID: 31439829
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells.
    Fink RD; McClay DR
    Dev Biol; 1985 Jan; 107(1):66-74. PubMed ID: 2578117
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Culture of and experiments with sea urchin embryo primary mesenchyme cells.
    Moreno B; DiCorato A; Park A; Mobilia K; Knapp R; Bleher R; Wilke C; Alvares K; Joester D
    Methods Cell Biol; 2019; 150():293-330. PubMed ID: 30777181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The program of protein synthesis during the development of the micromere-primary mesenchyme cell line in the sea urchin embryo.
    Harkey MA; Whiteley AH
    Dev Biol; 1983 Nov; 100(1):12-28. PubMed ID: 6617987
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Specification process of animal plate in the sea urchin embryo.
    Sasaki H; Kominami T
    Dev Growth Differ; 2008 Sep; 50(7):595-606. PubMed ID: 19238730
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Specification and differentiation processes of secondary mesenchyme-derived cells in embryos of the sea urchin Hemicentrotus pulcherrimus.
    Tokuoka M; Setoguchi C; Kominami T
    Dev Growth Differ; 2002 Jun; 44(3):239-50. PubMed ID: 12060073
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The synthesis and secretion of collagen by cultured sea urchin micromeres.
    Benson S; Smith L; Wilt F; Shaw R
    Exp Cell Res; 1990 May; 188(1):141-6. PubMed ID: 2328772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of micromere signaling in Notch activation and mesoderm specification during sea urchin embryogenesis.
    Sweet HC; Hodor PG; Ettensohn CA
    Development; 1999 Dec; 126(23):5255-65. PubMed ID: 10556051
    [TBL] [Abstract][Full Text] [Related]  

  • 34. HpEts, an ets-related transcription factor implicated in primary mesenchyme cell differentiation in the sea urchin embryo.
    Kurokawa D; Kitajima T; Mitsunaga-Nakatsubo K; Amemiya S; Shimada H; Akasaka K
    Mech Dev; 1999 Jan; 80(1):41-52. PubMed ID: 10096062
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Maternal control of early patterning in sea urchin embryos.
    Kipryushina YO; Yakovlev KV
    Differentiation; 2020; 113():28-37. PubMed ID: 32371341
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell interactions and mesodermal cell fates in the sea urchin embryo.
    Ettensohn CA
    Dev Suppl; 1992; ():43-51. PubMed ID: 1299367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interactions of different vegetal cells with mesomeres during early stages of sea urchin development.
    Khaner O; Wilt F
    Development; 1991 Jul; 112(3):881-90. PubMed ID: 1935693
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Postembryonic segregation of the germ line in sea urchins in relation to indirect development.
    Ransick A; Cameron RA; Davidson EH
    Proc Natl Acad Sci U S A; 1996 Jun; 93(13):6759-63. PubMed ID: 8692891
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Skeletal pattern is specified autonomously by the primary mesenchyme cells in sea urchin embryos.
    Armstrong N; McClay DR
    Dev Biol; 1994 Apr; 162(2):329-38. PubMed ID: 8150198
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The micro1 gene is necessary and sufficient for micromere differentiation and mid/hindgut-inducing activity in the sea urchin embryo.
    Yamazaki A; Kawabata R; Shiomi K; Amemiya S; Sawaguchi M; Mitsunaga-Nakatsubo K; Yamaguchi M
    Dev Genes Evol; 2005 Sep; 215(9):450-59. PubMed ID: 16078091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.