These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9783480)

  • 41. Mass isolation and culture of sea urchin micromeres.
    Harkey MA; Whiteley AH
    In Vitro Cell Dev Biol; 1985 Feb; 21(2):108-13. PubMed ID: 4008427
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Studies on Unequal Cleavage in Sea Urchins III. Micromere Formation under Compression: (equal division/unequal division/micromere formation/Hertwig's rule/Balfour's rule).
    Dan K
    Dev Growth Differ; 1987 Oct; 29(5):503-515. PubMed ID: 37280832
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pamlin, a primary mesenchyme cell adhesion protein, in the basal lamina of the sea urchin embryo.
    Katow H
    Exp Cell Res; 1995 Jun; 218(2):469-78. PubMed ID: 7796882
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evolutionary change in the process of dorsoventral axis determination in the direct developing sea urchin, Heliocidaris erythrogramma.
    Henry JJ; Raff RA
    Dev Biol; 1990 Sep; 141(1):55-69. PubMed ID: 2391006
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evolutionary modification of specification for the endomesoderm in the direct developing echinoid Peronella japonica: loss of the endomesoderm-inducing signal originating from micromeres.
    Iijima M; Ishizuka Y; Nakajima Y; Amemiya S; Minokawa T
    Dev Genes Evol; 2009 May; 219(5):235-47. PubMed ID: 19437036
    [TBL] [Abstract][Full Text] [Related]  

  • 46. New early zygotic regulators expressed in endomesoderm of sea urchin embryos discovered by differential array hybridization.
    Ransick A; Rast JP; Minokawa T; Calestani C; Davidson EH
    Dev Biol; 2002 Jun; 246(1):132-47. PubMed ID: 12027439
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Micromere-derived signal regulates larval left-right polarity during sea urchin development.
    Kitazawa C; Amemiya S
    J Exp Zool A Ecol Genet Physiol; 2007 May; 307(5):249-62. PubMed ID: 17351911
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The use of confocal microscopy and STERECON reconstructions in the analysis of sea urchin embryonic cell division.
    Summers RG; Musial CE; Cheng PC; Leith A; Marko M
    J Electron Microsc Tech; 1991 May; 18(1):24-30. PubMed ID: 2056349
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [A "micromere model" of cellular interactions in sea urchin embryos].
    Shmukler IuB
    Biofizika; 2010; 55(3):451-9. PubMed ID: 20586324
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cleavage and differentiation in the sea urchin embryo. Transplantation studies of micromeres.
    Lönning S; Hagström BE
    Protoplasma; 1971; 73(3):303-22. PubMed ID: 4331162
    [No Abstract]   [Full Text] [Related]  

  • 51. Fourth cleavage of sea urchin blastomeres: microtubule patterns and myosin localization in equal and unequal cell divisions.
    Schroeder TE
    Dev Biol; 1987 Nov; 124(1):9-22. PubMed ID: 3311851
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Disruption of primary mesenchyme cell patterning by misregulated ectodermal expression of SpMsx in sea urchin embryos.
    Tan H; Ransick A; Wu H; Dobias S; Liu YH; Maxson R
    Dev Biol; 1998 Sep; 201(2):230-46. PubMed ID: 9740661
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The origin of spicule-forming cells in a 'primitive' sea urchin (Eucidaris tribuloides) which appears to lack primary mesenchyme cells.
    Wray GA; McClay DR
    Development; 1988 Jun; 103(2):305-15. PubMed ID: 3066611
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Primary mesenchyme cell migration in the sea urchin embryo: distribution of directional cues.
    Malinda KM; Ettensohn CA
    Dev Biol; 1994 Aug; 164(2):562-78. PubMed ID: 8045352
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Change in the adhesive properties of blastomeres during early cleavage stages in sea urchin embryo.
    Masui M; Kominami T
    Dev Growth Differ; 2001 Feb; 43(1):43-53. PubMed ID: 11148451
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of cell contact in the specification process of pigment founder cells in the sea urchin embryo.
    Takata H; Kominami T; Masui M
    Zoolog Sci; 2002 Mar; 19(3):299-307. PubMed ID: 12125928
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cell interactions in the sea urchin embryo studied by fluorescence photoablation.
    Ettensohn CA
    Science; 1990 Jun; 248(4959):1115-8. PubMed ID: 2188366
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Polarized distribution of L-type calcium channels in early sea urchin embryos.
    Dale B; Yazaki I; Tosti E
    Am J Physiol; 1997 Sep; 273(3 Pt 1):C822-5. PubMed ID: 9316401
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Early gene expression along the animal-vegetal axis in sea urchin embryoids and grafted embryos.
    Ghiglione C; Emily-Fenouil F; Chang P; Gache C
    Development; 1996 Oct; 122(10):3067-74. PubMed ID: 8898220
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Carbonic anhydrase inhibition blocks skeletogenesis and echinochrome production in Paracentrotus lividus and Heliocidaris tuberculata embryos and larvae.
    Zito F; Koop D; Byrne M; Matranga V
    Dev Growth Differ; 2015 Sep; 57(7):507-14. PubMed ID: 26108341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.