These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Using maximal and submaximal aerobic variables to monitor elite cyclists during a season. Barbeau P; Serresse O; Boulay MR Med Sci Sports Exerc; 1993 Sep; 25(9):1062-9. PubMed ID: 8231776 [TBL] [Abstract][Full Text] [Related]
43. Pitfalls in interpreting red blood cell parameters in elite high-altitude and sea-level athletes: A unique case series. Baart AM; Klein Gunnewiek JMT; Balvers MGJ; Zwerver J; Vergouwen PCJ Physiol Rep; 2021 Jul; 9(13):e14891. PubMed ID: 34197694 [TBL] [Abstract][Full Text] [Related]
44. The contribution of haemoglobin mass to increases in cycling performance induced by simulated LHTL. Garvican LA; Pottgiesser T; Martin DT; Schumacher YO; Barras M; Gore CJ Eur J Appl Physiol; 2011 Jun; 111(6):1089-101. PubMed ID: 21113616 [TBL] [Abstract][Full Text] [Related]
45. Year-to-year variability in haemoglobin mass response to two altitude training camps. McLean BD; Buttifant D; Gore CJ; White K; Kemp J Br J Sports Med; 2013 Dec; 47 Suppl 1(Suppl 1):i51-8. PubMed ID: 24282208 [TBL] [Abstract][Full Text] [Related]
46. Timing the arrival at 2340 m altitude for aerobic performance. Schuler B; Thomsen JJ; Gassmann M; Lundby C Scand J Med Sci Sports; 2007 Oct; 17(5):588-94. PubMed ID: 17316377 [TBL] [Abstract][Full Text] [Related]
47. Relationship between %HRmax, %HR reserve, %VO2max, and %VO2 reserve in elite cyclists. Lounana J; Campion F; Noakes TD; Medelli J Med Sci Sports Exerc; 2007 Feb; 39(2):350-7. PubMed ID: 17277600 [TBL] [Abstract][Full Text] [Related]
48. Intermittent hypoxia as a means to improve aerobic capacity in type 2 diabetes. Leone RJ; Lalande S Med Hypotheses; 2017 Mar; 100():59-63. PubMed ID: 28236850 [TBL] [Abstract][Full Text] [Related]
49. Frequency of the VO2max plateau phenomenon in world-class cyclists. Lucía A; Rabadán M; Hoyos J; Hernández-Capilla M; Pérez M; San Juan AF; Earnest CP; Chicharro JL Int J Sports Med; 2006 Dec; 27(12):984-92. PubMed ID: 16739087 [TBL] [Abstract][Full Text] [Related]
50. Live high-train low associated with increased haemoglobin mass as preparation for the 2003 World Championships in two native European world class runners. Wehrlin JP; Marti B Br J Sports Med; 2006 Feb; 40(2):e3; discussion e3. PubMed ID: 16431990 [TBL] [Abstract][Full Text] [Related]
51. Improved running economy in elite runners after 20 days of simulated moderate-altitude exposure. Saunders PU; Telford RD; Pyne DB; Cunningham RB; Gore CJ; Hahn AG; Hawley JA J Appl Physiol (1985); 2004 Mar; 96(3):931-7. PubMed ID: 14607850 [TBL] [Abstract][Full Text] [Related]
52. Effects of training at simulated altitude on performance and muscle metabolic capacity in competitive road cyclists. Terrados N; Melichna J; Sylvén C; Jansson E; Kaijser L Eur J Appl Physiol Occup Physiol; 1988; 57(2):203-9. PubMed ID: 3349988 [TBL] [Abstract][Full Text] [Related]
53. Exercise training and intensity does not alter vascular volume responses in women. Branch JD; Pate RR; Bourque SP; Convertino VA; Durstine JL; Ward DS Aviat Space Environ Med; 1999 Nov; 70(11):1070-6. PubMed ID: 10608603 [TBL] [Abstract][Full Text] [Related]
54. Reticulocyte parameters as potential discriminators of recombinant human erythropoietin abuse in elite athletes. Parisotto R; Gore CJ; Hahn AG; Ashenden MJ; Olds TS; Martin DT; Pyne DB; Gawthorn K; Brugnara C Int J Sports Med; 2000 Oct; 21(7):471-9. PubMed ID: 11071048 [TBL] [Abstract][Full Text] [Related]
55. The response of trained athletes to six weeks of endurance training in hypoxia or normoxia. Ventura N; Hoppeler H; Seiler R; Binggeli A; Mullis P; Vogt M Int J Sports Med; 2003 Apr; 24(3):166-72. PubMed ID: 12740733 [TBL] [Abstract][Full Text] [Related]
56. Ventilatory threshold and maximal oxygen uptake during cycling and running in female triathletes. Schneider DA; Pollack J Int J Sports Med; 1991 Aug; 12(4):379-83. PubMed ID: 1917222 [TBL] [Abstract][Full Text] [Related]
57. The effects of hypobaric hypoxia on erythropoiesis, maximal oxygen uptake and energy cost of exercise under normoxia in elite biathletes. Czuba M; Maszczyk A; Gerasimuk D; Roczniok R; Fidos-Czuba O; Zając A; Gołaś A; Mostowik A; Langfort J J Sports Sci Med; 2014 Dec; 13(4):912-20. PubMed ID: 25435785 [TBL] [Abstract][Full Text] [Related]
58. Influence of test duration and event specificity on maximal accumulated oxygen deficit of high performance track cyclists. Craig NP; Norton KI; Conyers RA; Woolford SM; Bourdon PC; Stanef T; Walsh CB Int J Sports Med; 1995 Nov; 16(8):534-40. PubMed ID: 8776208 [TBL] [Abstract][Full Text] [Related]
59. The role of haemoglobin mass on VO(2)max following normobaric 'live high-train low' in endurance-trained athletes. Robach P; Siebenmann C; Jacobs RA; Rasmussen P; Nordsborg N; Pesta D; Gnaiger E; Díaz V; Christ A; Fiedler J; Crivelli N; Secher NH; Pichon A; Maggiorini M; Lundby C Br J Sports Med; 2012 Sep; 46(11):822-7. PubMed ID: 22790809 [TBL] [Abstract][Full Text] [Related]
60. Training-induced increases in sea-level performance are enhanced by acute intermittent hypobaric hypoxia. Meeuwsen T; Hendriksen IJ; Holewijn M Eur J Appl Physiol; 2001 Apr; 84(4):283-90. PubMed ID: 11374111 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]