These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 9784610)

  • 1. The influence of elaborated pericellular matrix on the deformation of isolated articular chondrocytes cultured in agarose.
    Knight MM; Lee DA; Bader DL
    Biochim Biophys Acta; 1998 Oct; 1405(1-3):67-77. PubMed ID: 9784610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of the deformation of isolated chondrocytes in agarose subjected to cyclic compression.
    Knight MM; Ghori SA; Lee DA; Bader DL
    Med Eng Phys; 1998; 20(9):684-8. PubMed ID: 10098613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels.
    Mauck RL; Soltz MA; Wang CC; Wong DD; Chao PH; Valhmu WB; Hung CT; Ateshian GA
    J Biomech Eng; 2000 Jun; 122(3):252-60. PubMed ID: 10923293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of pericellular matrix around agarose-embedded chondrocytes.
    Dimicco MA; Kisiday JD; Gong H; Grodzinsky AJ
    Osteoarthritis Cartilage; 2007 Oct; 15(10):1207-16. PubMed ID: 17524677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chondrocyte deformation within compressed agarose constructs at the cellular and sub-cellular levels.
    Lee DA; Knight MM; Bolton JF; Idowu BD; Kayser MV; Bader DL
    J Biomech; 2000 Jan; 33(1):81-95. PubMed ID: 10609521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain-dependent viscoelastic behaviour and rupture force of single chondrocytes and chondrons under compression.
    Nguyen BV; Wang Q; Kuiper NJ; El Haj AJ; Thomas CR; Zhang Z
    Biotechnol Lett; 2009 Jun; 31(6):803-9. PubMed ID: 19205892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An axisymmetric boundary element model for determination of articular cartilage pericellular matrix properties in situ via inverse analysis of chondron deformation.
    Kim E; Guilak F; Haider MA
    J Biomech Eng; 2010 Mar; 132(3):031011. PubMed ID: 20459199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels.
    Mauck RL; Seyhan SL; Ateshian GA; Hung CT
    Ann Biomed Eng; 2002 Sep; 30(8):1046-56. PubMed ID: 12449765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix.
    Buschmann MD; Gluzband YA; Grodzinsky AJ; Kimura JH; Hunziker EB
    J Orthop Res; 1992 Nov; 10(6):745-58. PubMed ID: 1403287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chondrocyte deformation within mechanically and enzymatically extracted chondrons compressed in agarose.
    Knight MM; Ross JM; Sherwin AF; Lee DA; Bader DL; Poole CA
    Biochim Biophys Acta; 2001 May; 1526(2):141-6. PubMed ID: 11325535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of pericellular matrix in development of a mechanically functional neocartilage.
    Graff RD; Kelley SS; Lee GM
    Biotechnol Bioeng; 2003 May; 82(4):457-64. PubMed ID: 12632402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The deformation behavior and mechanical properties of chondrocytes in articular cartilage.
    Guilak F; Jones WR; Ting-Beall HP; Lee GM
    Osteoarthritis Cartilage; 1999 Jan; 7(1):59-70. PubMed ID: 10367015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The development and characterization of an in vitro system to study strain-induced cell deformation in isolated chondrocytes.
    Lee DA; Bader DL
    In Vitro Cell Dev Biol Anim; 1995 Dec; 31(11):828-35. PubMed ID: 8826085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regeneration of static-load-degenerated articular cartilage extracellular matrix by vitamin C supplementation.
    Sharma G; Saxena RK; Mishra P
    Cell Tissue Res; 2008 Oct; 334(1):111-20. PubMed ID: 18679720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chondrocyte deformation induces mitochondrial distortion and heterogeneous intracellular strain fields.
    Knight MM; Bomzon Z; Kimmel E; Sharma AM; Lee DA; Bader DL
    Biomech Model Mechanobiol; 2006 Jun; 5(2-3):180-91. PubMed ID: 16520962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new biodegradable polyester elastomer for cartilage tissue engineering.
    Kang Y; Yang J; Khan S; Anissian L; Ameer GA
    J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supplementation with platelet-rich plasma improves the in vitro formation of tissue-engineered cartilage with enhanced mechanical properties.
    Petrera M; De Croos JN; Iu J; Hurtig M; Kandel RA; Theodoropoulos JS
    Arthroscopy; 2013 Oct; 29(10):1685-92. PubMed ID: 24075614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of sodium bicarbonate on extracellular pH, matrix accumulation, and morphology of cultured articular chondrocytes.
    Waldman SD; Couto DC; Omelon SJ; Kandel RA
    Tissue Eng; 2004; 10(11-12):1633-40. PubMed ID: 15684672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic deformational loading results in selective application of mechanical stimulation in a layered, tissue-engineered cartilage construct.
    Ng KW; Mauck RL; Statman LY; Lin EY; Ateshian GA; Hung CT
    Biorheology; 2006; 43(3,4):497-507. PubMed ID: 16912421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage.
    Guilak F; Mow VC
    J Biomech; 2000 Dec; 33(12):1663-73. PubMed ID: 11006391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.