BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

583 related articles for article (PubMed ID: 9784821)

  • 21. An in vivo determination of patellofemoral contact positions.
    Komistek RD; Dennis DA; Mabe JA; Walker SA
    Clin Biomech (Bristol, Avon); 2000 Jan; 15(1):29-36. PubMed ID: 10590342
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effects of harvesting the central third of the patella tendon on the kinetics of the knee joint and the retropatellar pressure].
    Wilharm A; Dermitas T; Hurschler C; Ostermeier S; Wirth CJ; Bohnsack M
    Z Orthop Ihre Grenzgeb; 2006; 144(1):102-7. PubMed ID: 16498569
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Patellar strain and patellofemoral contact after bone-patellar tendon-bone harvest for anterior cruciate ligament reconstruction.
    Sharkey NA; Donahue SW; Smith TS; Bay BK; Marder RA
    Arch Phys Med Rehabil; 1997 Mar; 78(3):256-63. PubMed ID: 9084346
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of patellar tendon shortening on tracking of the patella.
    Upadhyay N; Vollans SR; Seedhom BB; Soames RW
    Am J Sports Med; 2005 Oct; 33(10):1565-74. PubMed ID: 16009982
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of anterior displacement of the tibial tuberosity on patellofemoral biomechanics.
    van Eijden TM; Kouwenhoven E; Weijs WA
    Int Orthop; 1987; 11(3):215-21. PubMed ID: 3623759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How does patellar tendon advancement alter the knee extensor mechanism in children treated for crouch gait?
    Bittmann MF; Lenhart RL; Schwartz MH; Novacheck TF; Hetzel S; Thelen DG
    Gait Posture; 2018 Jul; 64():248-254. PubMed ID: 29958159
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stair climbing results in more challenging patellofemoral contact mechanics and kinematics than walking at early knee flexion under physiological-like quadriceps loading.
    Goudakos IG; König C; Schöttle PB; Taylor WR; Singh NB; Roberts I; Streitparth F; Duda GN; Heller MO
    J Biomech; 2009 Nov; 42(15):2590-6. PubMed ID: 19656517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Patellofemoral arthroplasty influences tibiofemoral kinematics: the effect of patellar thickness.
    Vandenneucker H; Labey L; Victor J; Vander Sloten J; Desloovere K; Bellemans J
    Knee Surg Sports Traumatol Arthrosc; 2014 Oct; 22(10):2560-8. PubMed ID: 25023661
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mobile-bearing total knee arthroplasty improves patellar tracking and patellofemoral contact stress: in vivo measurements in the same patients.
    Sawaguchi N; Majima T; Ishigaki T; Mori N; Terashima T; Minami A
    J Arthroplasty; 2010 Sep; 25(6):920-5. PubMed ID: 19775856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The anatomy and reconstruction of the medial patellofemoral ligament.
    Smirk C; Morris H
    Knee; 2003 Sep; 10(3):221-7. PubMed ID: 12893143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The biomechanics of the human patella during passive knee flexion.
    Heegaard J; Leyvraz PF; Curnier A; Rakotomanana L; Huiskes R
    J Biomech; 1995 Nov; 28(11):1265-79. PubMed ID: 8522541
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magnetic resonance imaging of in vivo patellofemoral kinematics after total knee arthroplasty.
    Carpenter RD; Brilhault J; Majumdar S; Ries MD
    Knee; 2009 Oct; 16(5):332-6. PubMed ID: 19188068
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An in vitro analysis of patellofemoral contact areas and pressures following procurement of the central one-third patellar tendon.
    D'Agata SD; Pearsall AW; Reider B; Draganich LF
    Am J Sports Med; 1993; 21(2):212-9. PubMed ID: 8465915
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Variations in kinematics and function following patellar stabilization including tibial tuberosity realignment.
    Elias JJ; Carrino JA; Saranathan A; Guseila LM; Tanaka MJ; Cosgarea AJ
    Knee Surg Sports Traumatol Arthrosc; 2014 Oct; 22(10):2350-6. PubMed ID: 24531362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simulation of patella alta and the implications for in vitro patellar tracking in the ovine stifle joint.
    Bertollo N; Pelletier MH; Walsh WR
    J Orthop Res; 2012 Nov; 30(11):1789-97. PubMed ID: 22581606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of femoral component malrotation on patellar biomechanics.
    Kessler O; Patil S; Colwell CW; D'Lima DD
    J Biomech; 2008 Dec; 41(16):3332-9. PubMed ID: 19019376
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superior-inferior position of patellar component affects patellofemoral kinematics and contact forces in computer simulation.
    Nakamura S; Tanaka Y; Kuriyama S; Nishitani K; Ito H; Furu M; Matsuda S
    Clin Biomech (Bristol, Avon); 2017 Jun; 45():19-24. PubMed ID: 28437676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomechanical effects of patellar positioning on intraoperative knee joint gap measurement in total knee arthroplasty.
    Gejo R; McGarry MH; Jun BJ; Hofer JK; Kimura T; Lee TQ
    Clin Biomech (Bristol, Avon); 2010 May; 25(4):352-8. PubMed ID: 20117864
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Patellofemoral contact forces and pressures during intramedullary tibial nailing.
    Devitt AT; Coughlan KA; Ward T; McCormack D; Mulcahy D; Felle P; McElwain JP
    Int Orthop; 1998; 22(2):92-6. PubMed ID: 9651773
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional patellar tendon fibre kinematics in navigated TKA with and without patellar resurfacing.
    Belvedere C; Ensini A; d'Amato M; Barbadoro P; Leardini A
    Knee Surg Sports Traumatol Arthrosc; 2017 Dec; 25(12):3834-3843. PubMed ID: 27738741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.