BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 9784915)

  • 1. Role of hepatic fatty acid:coenzyme A ligases in the metabolism of xenobiotic carboxylic acids.
    Knights KM
    Clin Exp Pharmacol Physiol; 1998 Oct; 25(10):776-82. PubMed ID: 9784915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arabidopsis contains nine long-chain acyl-coenzyme a synthetase genes that participate in fatty acid and glycerolipid metabolism.
    Shockey JM; Fulda MS; Browse JA
    Plant Physiol; 2002 Aug; 129(4):1710-22. PubMed ID: 12177484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studying the topology of peroxisomal acyl-CoA synthetases using self-assembling split sfGFP.
    Chornyi S; Koster J; IJlst L; Waterham HR
    Histochem Cell Biol; 2024 Feb; 161(2):133-144. PubMed ID: 38243092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Staphylococcus aureus, the acyl-CoA synthetase MbcS supports branched-chain fatty acid synthesis from carboxylic acid and aldehyde precursors.
    Dos Santos Ferreira MC; Pendleton A; Yeo WS; Málaga Gadea FC; Camelo D; McGuire M; Brinsmade SR
    Mol Microbiol; 2024 May; 121(5):865-881. PubMed ID: 38366323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acyl-CoA synthesis, lipid metabolism and lipotoxicity.
    Li LO; Klett EL; Coleman RA
    Biochim Biophys Acta; 2010 Mar; 1801(3):246-51. PubMed ID: 19818872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Biocatalytic Synthesis of Aromatic Acid CoA Thioesters by Using Microbial Aromatic Acid CoA Ligases.
    Chaudhury D; Torkelson ER; Meyers KA; Acheson JF; Landucci L; Pu Y; Sun Z; Tonelli M; Bingman CA; Smith RA; Karlen SD; Mansfield SD; Ralph J; Fox BG
    Chembiochem; 2023 May; 24(9):e202300001. PubMed ID: 36821718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinformatic Analysis of Leishmania donovani Long-Chain Fatty Acid-CoA Ligase as a Novel Drug Target.
    Kaur J; Tiwari R; Kumar A; Singh N
    Mol Biol Int; 2011; 2011():278051. PubMed ID: 22091399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Characterization of the Reaction and Substrate Specificity Mechanisms of Pathogenic Fungal Acetyl-CoA Synthetases.
    Jezewski AJ; Alden KM; Esan TE; DeBouver ND; Abendroth J; Bullen JC; Calhoun BM; Potts KT; Murante DM; Hagen TJ; Fox D; Krysan DJ
    ACS Chem Biol; 2021 Aug; 16(8):1587-1599. PubMed ID: 34369755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Intracellular Lipid Binding Proteins on Endogenous and Xenobiotic Ligand Metabolism and Disposition.
    Yabut KCB; Isoherranen N
    Drug Metab Dispos; 2023 Jun; 51(6):700-717. PubMed ID: 37012074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xenobiotic metabolism, disposition, and regulation by receptors: from biochemical phenomenon to predictors of major toxicities.
    Omiecinski CJ; Vanden Heuvel JP; Perdew GH; Peters JM
    Toxicol Sci; 2011 Mar; 120 Suppl 1(Suppl 1):S49-75. PubMed ID: 21059794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of
    Cui J; Ju KS
    ACS Chem Biol; 2024 Jun; ():. PubMed ID: 38885091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The glycine
    Kühn S; Williams ME; Dercksen M; Sass JO; van der Sluis R
    Comput Struct Biotechnol J; 2023; 21():1236-1248. PubMed ID: 36817957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overcompensation of CoA Trapping by Di(2-ethylhexyl) Phthalate (DEHP) Metabolites in Livers of Wistar Rats.
    Hala D; Petersen LH; Huggett DB; Puchowicz MA; Brunengraber H; Zhang GF
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thioesterase induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin results in a futile cycle that inhibits hepatic β-oxidation.
    Cholico GN; Fling RR; Zacharewski NA; Fader KA; Nault R; Zacharewski TR
    Sci Rep; 2021 Aug; 11(1):15689. PubMed ID: 34344994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional Characterisation of Three Glycine
    Rohwer JM; Schutte C; van der Sluis R
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33803916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of
    Watanabe H; Paxton RL; Tolerico MR; Nagalakshmi VK; Tanaka S; Okusa MD; Goto S; Narita I; Watanabe S; Sequeira-Lοpez MLS; Gomez RA
    Am J Physiol Renal Physiol; 2020 Oct; 319(4):F603-F611. PubMed ID: 32830538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyses of the genetic diversity and protein expression variation of the acyl: CoA medium-chain ligases, ACSM2A and ACSM2B.
    van der Sluis R
    Mol Genet Genomics; 2018 Oct; 293(5):1279-1292. PubMed ID: 29948332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Living on the edge: substrate competition explains loss of robustness in mitochondrial fatty-acid oxidation disorders.
    van Eunen K; Volker-Touw CM; Gerding A; Bleeker A; Wolters JC; van Rijt WJ; Martines AM; Niezen-Koning KE; Heiner RM; Permentier H; Groen AK; Reijngoud DJ; Derks TG; Bakker BM
    BMC Biol; 2016 Dec; 14(1):107. PubMed ID: 27927213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression, purification, and characterization of mouse glycine N-acyltransferase in Escherichia coli.
    Dempsey DR; Bond JD; Carpenter AM; Rodriguez Ospina S; Merkler DJ
    Protein Expr Purif; 2014 May; 97():23-8. PubMed ID: 24576660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peroxisomal acyl-CoA synthetases.
    Watkins PA; Ellis JM
    Biochim Biophys Acta; 2012 Sep; 1822(9):1411-20. PubMed ID: 22366061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.