These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 978519)

  • 1. Spike initiation by transmembrane current: a white-noise analysis.
    Bryant HL; Segundo JP
    J Physiol; 1976 Sep; 260(2):279-314. PubMed ID: 978519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relation between shapes of post-synaptic potentials and changes in firing probability of cat motoneurones.
    Fetz EE; Gustafsson B
    J Physiol; 1983 Aug; 341():387-410. PubMed ID: 6620185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of the input signal and prior activation history to the discharge behaviour of rat motoneurones.
    Powers RK; Dai Y; Bell BM; Percival DB; Binder MD
    J Physiol; 2005 Feb; 562(Pt 3):707-24. PubMed ID: 15611038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. White noise analysis of pace-maker-response interactions and non-linearities in slowly adapting crayfish stretch receptor.
    Buño W; Bustamante J; Fuentes J
    J Physiol; 1984 May; 350():55-80. PubMed ID: 6747858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patch-clamp study of postnatal development of CA1 neurons in rat hippocampal slices: membrane excitability and K+ currents.
    Spigelman I; Zhang L; Carlen PL
    J Neurophysiol; 1992 Jul; 68(1):55-69. PubMed ID: 1517828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship of firing intervals of human motor units to the trajectory of post-spike after-hyperpolarization and synaptic noise.
    Matthews PB
    J Physiol; 1996 Apr; 492 ( Pt 2)(Pt 2):597-628. PubMed ID: 9019553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiology of the mammillary complex in vitro. I. Tuberomammillary and lateral mammillary neurons.
    Llinás RR; Alonso A
    J Neurophysiol; 1992 Oct; 68(4):1307-20. PubMed ID: 1279134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two types of intrinsic oscillations in neurons of the lateral and basolateral nuclei of the amygdala.
    Pape HC; Paré D; Driesang RB
    J Neurophysiol; 1998 Jan; 79(1):205-16. PubMed ID: 9425192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The spike-triggered average of the integrate-and-fire cell driven by gaussian white noise.
    Paninski L
    Neural Comput; 2006 Nov; 18(11):2592-616. PubMed ID: 16999572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time coupling of skeletomotor discharges in response to pseudo-random transsynaptic and transmembrane stimulation.
    Anastasijević R; Jovanović K; Ljubisavljević M; Vuco J
    Biol Cybern; 1991; 64(4):321-8. PubMed ID: 2025666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms for signal transformation in lemniscal auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    J Neurophysiol; 1996 Dec; 76(6):3597-608. PubMed ID: 8985860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spike discharges of skeletomotor neurons during random noise modulated transmembrane current stimulation and muscle stretch.
    Boskov D; Jocic M; Jovanovic K; Ljubisavljevic M; Anastasijevic R
    Biol Cybern; 1994; 71(4):341-8. PubMed ID: 7948225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spike and burst coding in thalamocortical relay cells.
    Zeldenrust F; Chameau P; Wadman WJ
    PLoS Comput Biol; 2018 Feb; 14(2):e1005960. PubMed ID: 29432418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bursting and oscillating neurons of the cat basolateral amygdaloid complex in vivo: electrophysiological properties and morphological features.
    Paré D; Pape HC; Dong J
    J Neurophysiol; 1995 Sep; 74(3):1179-91. PubMed ID: 7500142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of frequency-dependent broadening of molluscan neurone soma spikes.
    Aldrich RW; Getting PA; Thompson SH
    J Physiol; 1979 Jun; 291():531-44. PubMed ID: 480247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of mitral/tufted cells to orthodromic and antidromic electrical stimulation in the olfactory bulb of the tiger salamander.
    Hamilton KA; Kauer JS
    J Neurophysiol; 1988 Jun; 59(6):1736-55. PubMed ID: 3404202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic cellular currents and the temporal precision of EPSP-action potential coupling in CA1 pyramidal cells.
    Axmacher N; Miles R
    J Physiol; 2004 Mar; 555(Pt 3):713-25. PubMed ID: 14724200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological properties of guinea pig trigeminal motoneurons recorded in vitro.
    Chandler SH; Hsaio CF; Inoue T; Goldberg LJ
    J Neurophysiol; 1994 Jan; 71(1):129-45. PubMed ID: 7908952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of a nonspecific cation conductance by intracellular Ca2+ elevation in bursting pacemaker neurons of Helix pomatia.
    Swandulla D; Lux HD
    J Neurophysiol; 1985 Dec; 54(6):1430-43. PubMed ID: 2418170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of postsynaptic potentials in rat hypoglossal motoneurones: insights for human work.
    Türker KS; Powers RK
    J Physiol; 2003 Sep; 551(Pt 2):419-31. PubMed ID: 12872008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.