These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 9786025)

  • 1. Pharmacological analysis of intracellular Ca2+ signalling: problems and pitfalls.
    Taylor CW; Broad LM
    Trends Pharmacol Sci; 1998 Sep; 19(9):370-5. PubMed ID: 9786025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal transduction. The calcium entry pas de deux.
    Berridge MJ; Lipp P; Bootman MD
    Science; 2000 Mar; 287(5458):1604-5. PubMed ID: 10733429
    [No Abstract]   [Full Text] [Related]  

  • 3. Inositol trisphosphate receptors: Ca2+-modulated intracellular Ca2+ channels.
    Taylor CW
    Biochim Biophys Acta; 1998 Dec; 1436(1-2):19-33. PubMed ID: 9838027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How do inositol phosphates regulate calcium signaling?
    Putney JW; Takemura H; Hughes AR; Horstman DA; Thastrup O
    FASEB J; 1989 Jun; 3(8):1899-905. PubMed ID: 2542110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. P2Y and P2U receptors differentially release intracellular Ca2+ via the phospholipase c/inositol 1,4,5-triphosphate pathway in astrocytes from the dorsal spinal cord.
    Idestrup CP; Salter MW
    Neuroscience; 1998 Oct; 86(3):913-23. PubMed ID: 9692727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurotensin stimulates both calcium mobilization from inositol trisphosphate-sensitive intracellular stores and calcium influx through membrane channels in frog pituitary melanotrophs.
    Belmeguenai A; Desrues L; Leprince J; Vaudry H; Tonon MC; Louiset E
    Endocrinology; 2003 Dec; 144(12):5556-67. PubMed ID: 14500581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel role for calmodulin: Ca2+-independent inhibition of type-1 inositol trisphosphate receptors.
    Cardy TJ; Taylor CW
    Biochem J; 1998 Sep; 334 ( Pt 2)(Pt 2):447-55. PubMed ID: 9716504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two calcium-binding sites mediate the interconversion of liver inositol 1,4,5-trisphosphate receptors between three conformational states.
    Marshall IC; Taylor CW
    Biochem J; 1994 Jul; 301 ( Pt 2)(Pt 2):591-8. PubMed ID: 8043006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium and inositol trisphosphate receptors.
    Taylor CW; Traynor D
    J Membr Biol; 1995 May; 145(2):109-18. PubMed ID: 7563013
    [No Abstract]   [Full Text] [Related]  

  • 10. Ca2+ waves require sequential activation of inositol trisphosphate receptors and ryanodine receptors in pancreatic acini.
    Leite MF; Burgstahler AD; Nathanson MH
    Gastroenterology; 2002 Feb; 122(2):415-27. PubMed ID: 11832456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pharmacology of intracellular Ca(2+)-release channels.
    Ehrlich BE; Kaftan E; Bezprozvannaya S; Bezprozvanny I
    Trends Pharmacol Sci; 1994 May; 15(5):145-9. PubMed ID: 7754532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of calcium oscillations and waves: a quantitative analysis.
    Sneyd J; Keizer J; Sanderson MJ
    FASEB J; 1995 Nov; 9(14):1463-72. PubMed ID: 7589988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional interaction between InsP3 receptors and store-operated Htrp3 channels.
    Kiselyov K; Xu X; Mozhayeva G; Kuo T; Pessah I; Mignery G; Zhu X; Birnbaumer L; Muallem S
    Nature; 1998 Dec; 396(6710):478-82. PubMed ID: 9853757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feedback activation of phospholipase C via intracellular mobilization and store-operated influx of Ca2+ in insulin-secreting beta-cells.
    Thore S; Dyachok O; Gylfe E; Tengholm A
    J Cell Sci; 2005 Oct; 118(Pt 19):4463-71. PubMed ID: 16159958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inositol 1,4,5-trisphosphate-mediated Ca2+ release from platelet internal membranes is regulated by differential phosphorylation.
    Quinton TM; Brown KD; Dean WL
    Biochemistry; 1996 May; 35(21):6865-71. PubMed ID: 8639638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calmodulin and calcium-release channels.
    Kasri NN; Parys JB; Callewaert G; Missiaen L; De Smedt H
    Biol Res; 2004; 37(4):577-82. PubMed ID: 15709684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of Ca2+ entry into rat lactotrophs by thyrotrophin-releasing hormone.
    Carew MA; Mason WT
    J Physiol; 1995 Jul; 486 ( Pt 2)(Pt 2):349-60. PubMed ID: 7473202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signaling between intracellular Ca2+ stores and depletion-activated Ca2+ channels generates [Ca2+]i oscillations in T lymphocytes.
    Dolmetsch RE; Lewis RS
    J Gen Physiol; 1994 Mar; 103(3):365-88. PubMed ID: 8195779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of inositol 1,4,5-trisphosphate receptors changes the Ca2+ signal of Xenopus oocytes.
    DeLisle S; Blondel O; Longo FJ; Schnabel WE; Bell GI; Welsh MJ
    Am J Physiol; 1996 Apr; 270(4 Pt 1):C1255-61. PubMed ID: 8928753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The inositol 1,4,5-trisphosphate receptor--transcriptional regulation and modulation by phosphorylation.
    Krizanova O; Ondrias K
    Gen Physiol Biophys; 2003 Sep; 22(3):295-311. PubMed ID: 14986882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.