These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 9786075)
1. Virtual electrode effects in transvenous defibrillation-modulation by structure and interface: evidence from bidomain simulations and optical mapping. Entcheva E; Eason J; Efimov IR; Cheng Y; Malkin R; Claydon F J Cardiovasc Electrophysiol; 1998 Sep; 9(9):949-61. PubMed ID: 9786075 [TBL] [Abstract][Full Text] [Related]
2. Transmembrane voltage changes produced by real and virtual electrodes during monophasic defibrillation shock delivered by an implantable electrode. Efimov IR; Cheng YN; Biermann M; Van Wagoner DR; Mazgalev TN; Tchou PJ J Cardiovasc Electrophysiol; 1997 Sep; 8(9):1031-45. PubMed ID: 9300301 [TBL] [Abstract][Full Text] [Related]
4. Virtual electrode polarization in the far field: implications for external defibrillation. Efimov IR; Aguel F; Cheng Y; Wollenzier B; Trayanova N Am J Physiol Heart Circ Physiol; 2000 Sep; 279(3):H1055-70. PubMed ID: 10993768 [TBL] [Abstract][Full Text] [Related]
5. Direct evidence of the role of virtual electrode-induced phase singularity in success and failure of defibrillation. Efimov IR; Cheng Y; Yamanouchi Y; Tchou PJ J Cardiovasc Electrophysiol; 2000 Aug; 11(8):861-8. PubMed ID: 10969748 [TBL] [Abstract][Full Text] [Related]
6. Direct measurements of membrane time constant during defibrillation strength shocks. Sharma V; Qu F; Nikolski VP; DeGroot P; Efimov IR Heart Rhythm; 2007 Apr; 4(4):478-86. PubMed ID: 17399638 [TBL] [Abstract][Full Text] [Related]
7. Polarity reversal lowers activation time during diastolic field stimulation of the rabbit ventricles: insights into mechanisms. Maleckar MM; Woods MC; Sidorov VY; Holcomb MR; Mashburn DN; Wikswo JP; Trayanova NA Am J Physiol Heart Circ Physiol; 2008 Oct; 295(4):H1626-33. PubMed ID: 18708441 [TBL] [Abstract][Full Text] [Related]
9. A comparison of biventricular and conventional transvenous defibrillation: a computational study using patient derived models. Mocanu D; Kettenbach J; Sweeney MO; Kikinis R; Kenknight BH; Eisenberg SR Pacing Clin Electrophysiol; 2004 May; 27(5):586-93. PubMed ID: 15125713 [TBL] [Abstract][Full Text] [Related]
10. Differences between left and right ventricular chamber geometry affect cardiac vulnerability to electric shocks. RodrÃguez B; Li L; Eason JC; Efimov IR; Trayanova NA Circ Res; 2005 Jul; 97(2):168-75. PubMed ID: 15976315 [TBL] [Abstract][Full Text] [Related]
11. Intramural virtual electrodes during defibrillation shocks in left ventricular wall assessed by optical mapping of membrane potential. Fast VG; Sharifov OF; Cheek ER; Newton JC; Ideker RE Circulation; 2002 Aug; 106(8):1007-14. PubMed ID: 12186808 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms of superiority of ascending ramp waveforms: new insights into mechanisms of shock-induced vulnerability and defibrillation. Qu F; Li L; Nikolski VP; Sharma V; Efimov IR Am J Physiol Heart Circ Physiol; 2005 Aug; 289(2):H569-77. PubMed ID: 15792989 [TBL] [Abstract][Full Text] [Related]
14. Impact of transvenous lead position on active-can ICD defibrillation: a computer simulation study. Aguel F; Eason JC; Trayanova NA; Siekas G; Fishler MG Pacing Clin Electrophysiol; 1999 Jan; 22(1 Pt 2):158-64. PubMed ID: 9990622 [TBL] [Abstract][Full Text] [Related]
15. Optical mapping of ventricular defibrillation in isolated swine right ventricles: demonstration of a postshock isoelectric window after near-threshold defibrillation shocks. Wang NC; Lee MH; Ohara T; Okuyama Y; Fishbein GA; Lin SF; Karagueuzian HS; Chen PS Circulation; 2001 Jul; 104(2):227-33. PubMed ID: 11447091 [TBL] [Abstract][Full Text] [Related]
16. Transvenous biventricular defibrillation. Meisel E; Butter C; Philippon F; Higgins S; Strickberger SA; Smith J; Hahn S; Michel U; Schubert B; Pfeiffer D Am J Cardiol; 2000 Nov; 86(9A):76K-85K. PubMed ID: 11084104 [TBL] [Abstract][Full Text] [Related]
17. Patterns of and mechanisms for shock-induced polarization in the heart: a bidomain analysis. Entcheva E; Trayanova NA; Claydon FJ IEEE Trans Biomed Eng; 1999 Mar; 46(3):260-70. PubMed ID: 10097461 [TBL] [Abstract][Full Text] [Related]
19. Cardiac potential and potential gradient fields generated by single, combined, and sequential shocks during ventricular defibrillation. Wharton JM; Wolf PD; Smith WM; Chen PS; Frazier DW; Yabe S; Danieley N; Ideker RE Circulation; 1992 Apr; 85(4):1510-23. PubMed ID: 1555291 [TBL] [Abstract][Full Text] [Related]
20. Reversal of repolarization gradient does not reverse the chirality of shock-induced reentry in the rabbit heart. Cheng Y; Nikolski V; Efimov IR J Cardiovasc Electrophysiol; 2000 Sep; 11(9):998-1007. PubMed ID: 11021470 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]