These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 9786210)

  • 21. Calcium spikes and calcium currents in neurons from the medial preoptic nucleus of rat.
    Sundgren-Andersson AK; Johansson S
    Brain Res; 1998 Feb; 783(2):194-209. PubMed ID: 9507126
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synaptic and synaptically activated intrinsic conductances underlie inhibitory potentials in cat lateral amygdaloid projection neurons in vivo.
    Lang EJ; Paré D
    J Neurophysiol; 1997 Jan; 77(1):353-63. PubMed ID: 9120576
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects induced by the antiepileptic drug valproic acid upon the ionic currents recorded in rat neocortical neurons in cell culture.
    Zona C; Avoli M
    Exp Brain Res; 1990; 81(2):313-7. PubMed ID: 2168843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intrinsic membrane potential oscillations in hippocampal neurons in vitro.
    Leung LW; Yim CY
    Brain Res; 1991 Jul; 553(2):261-74. PubMed ID: 1718544
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contributions of voltage-gated Ca2+ channels in the proximal versus distal dendrites to synaptic integration in prefrontal cortical neurons.
    Seamans JK; Gorelova NA; Yang CR
    J Neurosci; 1997 Aug; 17(15):5936-48. PubMed ID: 9221790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Properties and ionic basis of the action potentials in the periaqueductal grey neurones of the guinea-pig.
    Sánchez D; Ribas J
    J Physiol; 1991; 440():167-87. PubMed ID: 1804959
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two types of intrinsic oscillations in neurons of the lateral and basolateral nuclei of the amygdala.
    Pape HC; Paré D; Driesang RB
    J Neurophysiol; 1998 Jan; 79(1):205-16. PubMed ID: 9425192
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calcium-dependent action potentials in rat supraoptic neurosecretory neurones recorded in vitro.
    Bourque CW; Renaud LP
    J Physiol; 1985 Jun; 363():419-28. PubMed ID: 3926994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reduced outward K+ conductances generate depolarizing after-potentials in rat supraoptic nucleus neurones.
    Li Z; Hatton GI
    J Physiol; 1997 Nov; 505 ( Pt 1)(Pt 1):95-106. PubMed ID: 9409474
    [TBL] [Abstract][Full Text] [Related]  

  • 30. N-methyl aspartate activates voltage-dependent calcium conductance in rat hippocampal pyramidal cells.
    Dingledine R
    J Physiol; 1983 Oct; 343():385-405. PubMed ID: 6139475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Voltage-gated potassium channels activated during action potentials in layer V neocortical pyramidal neurons.
    Kang J; Huguenard JR; Prince DA
    J Neurophysiol; 2000 Jan; 83(1):70-80. PubMed ID: 10634854
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Voltage- and use-dependent inhibition of Na+ channels in rat sensory neurones by 4030W92, a new antihyperalgesic agent.
    Trezise DJ; John VH; Xie XM
    Br J Pharmacol; 1998 Jul; 124(5):953-63. PubMed ID: 9692781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activation of N-methyl-D-aspartate receptors evokes calcium spikes in the dendrites of rat hypothalamic paraventricular nucleus neurons.
    Bains JS; Ferguson AV
    Neuroscience; 1999 Mar; 90(3):885-91. PubMed ID: 10218788
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Attenuation of glutamate-action, excitatory postsynaptic potentials, and spikes by intracellular QX 222 in hippocampal neurons.
    Puil E; Carlen PL
    Neuroscience; 1984 Feb; 11(2):389-98. PubMed ID: 6144079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ionic mechanisms involved in the spontaneous firing of tegmental pedunculopontine nucleus neurons of the rat.
    Takakusaki K; Kitai ST
    Neuroscience; 1997 Jun; 78(3):771-94. PubMed ID: 9153657
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Involvement of voltage- and ligand-gated Ca2+ channels in the neuroexcitatory and synergistic effects of putative uremic neurotoxins.
    D'Hooge R; Van de Vijver G; Van Bogaert PP; Marescau B; Vanholder R; De Deyn PP
    Kidney Int; 2003 May; 63(5):1764-75. PubMed ID: 12675852
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons.
    Renganathan M; Cummins TR; Waxman SG
    J Neurophysiol; 2001 Aug; 86(2):629-40. PubMed ID: 11495938
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low-threshold calcium electrogenesis in neocortical neurons.
    Friedman A; Gutnick MJ
    Neurosci Lett; 1987 Oct; 81(1-2):117-22. PubMed ID: 3696461
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb.
    Jahr CE; Nicoll RA
    J Physiol; 1982 May; 326():213-34. PubMed ID: 7108788
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electroresponsiveness of medial entorhinal cortex layer III neurons in vitro.
    Dickson CT; Mena AR; Alonso A
    Neuroscience; 1997 Dec; 81(4):937-50. PubMed ID: 9330357
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.