These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 9786973)

  • 21. Removal of MAP4 from microtubules in vivo produces no observable phenotype at the cellular level.
    Wang XM; Peloquin JG; Zhai Y; Bulinski JC; Borisy GG
    J Cell Biol; 1996 Feb; 132(3):345-57. PubMed ID: 8636213
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microtubule transport from the cell body into the axons of growing neurons.
    Slaughter T; Wang J; Black MM
    J Neurosci; 1997 Aug; 17(15):5807-19. PubMed ID: 9221779
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The balance between tau protein's microtubule growth and nucleation activities: implications for the formation of axonal microtubules.
    Brandt R; Lee G
    J Neurochem; 1993 Sep; 61(3):997-1005. PubMed ID: 8360696
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tau protein function in axonal formation.
    Paglini G; Peris L; Mascotti F; Quiroga S; Caceres A
    Neurochem Res; 2000 Jan; 25(1):37-42. PubMed ID: 10685602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relationship between microtubule dynamics and lamellipodium formation revealed by direct imaging of microtubules in cells treated with nocodazole or taxol.
    Mikhailov A; Gundersen GG
    Cell Motil Cytoskeleton; 1998; 41(4):325-40. PubMed ID: 9858157
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes.
    Takei Y; Teng J; Harada A; Hirokawa N
    J Cell Biol; 2000 Sep; 150(5):989-1000. PubMed ID: 10973990
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein kinase C activation promotes microtubule advance in neuronal growth cones by increasing average microtubule growth lifetimes.
    Kabir N; Schaefer AW; Nakhost A; Sossin WS; Forscher P
    J Cell Biol; 2001 Mar; 152(5):1033-44. PubMed ID: 11238458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective destruction of stable microtubules and axons by inhibitors of protein serine/threonine phosphatases in cultured human neurons.
    Merrick SE; Trojanowski JQ; Lee VM
    J Neurosci; 1997 Aug; 17(15):5726-37. PubMed ID: 9221771
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Doublecortin associates with microtubules preferentially in regions of the axon displaying actin-rich protrusive structures.
    Tint I; Jean D; Baas PW; Black MM
    J Neurosci; 2009 Sep; 29(35):10995-1010. PubMed ID: 19726658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microtubule assembly and turnover in growing axons.
    Li Y; Black MM
    J Neurosci; 1996 Jan; 16(2):531-44. PubMed ID: 8551337
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tau binding to microtubules does not directly affect microtubule-based vesicle motility.
    Morfini G; Pigino G; Mizuno N; Kikkawa M; Brady ST
    J Neurosci Res; 2007 Sep; 85(12):2620-30. PubMed ID: 17265463
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tau isoform-specific modulation of kinesin-driven microtubule gliding rates and trajectories as determined with tau-stabilized microtubules.
    Peck A; Sargin ME; LaPointe NE; Rose K; Manjunath BS; Feinstein SC; Wilson L
    Cytoskeleton (Hoboken); 2011 Jan; 68(1):44-55. PubMed ID: 21162159
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three distinct axonal transport rates for tau, tubulin, and other microtubule-associated proteins: evidence for dynamic interactions of tau with microtubules in vivo.
    Mercken M; Fischer I; Kosik KS; Nixon RA
    J Neurosci; 1995 Dec; 15(12):8259-67. PubMed ID: 8613759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of microtubules and actin filaments in the movement of mitochondria in the axons and dendrites of cultured hippocampal neurons.
    Ligon LA; Steward O
    J Comp Neurol; 2000 Nov; 427(3):351-61. PubMed ID: 11054698
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cytoplasmic dynein and LIS1 are required for microtubule advance during growth cone remodeling and fast axonal outgrowth.
    Grabham PW; Seale GE; Bennecib M; Goldberg DJ; Vallee RB
    J Neurosci; 2007 May; 27(21):5823-34. PubMed ID: 17522326
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tau Does Not Stabilize Axonal Microtubules but Rather Enables Them to Have Long Labile Domains.
    Qiang L; Sun X; Austin TO; Muralidharan H; Jean DC; Liu M; Yu W; Baas PW
    Curr Biol; 2018 Jul; 28(13):2181-2189.e4. PubMed ID: 30008334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration.
    Ertürk A; Hellal F; Enes J; Bradke F
    J Neurosci; 2007 Aug; 27(34):9169-80. PubMed ID: 17715353
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microtubule transport and assembly cooperate to generate the microtubule array of growing axons.
    Black MM
    Prog Brain Res; 1994; 102():61-77. PubMed ID: 7800833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons.
    Caceres A; Kosik KS
    Nature; 1990 Feb; 343(6257):461-3. PubMed ID: 2105469
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microtubule-associated protein 1b (MAP1b) is concentrated in the distal region of growing axons.
    Black MM; Slaughter T; Fischer I
    J Neurosci; 1994 Feb; 14(2):857-70. PubMed ID: 8301365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.