These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 9786983)

  • 1. Depolarization selectively increases the expression of the Kv3.1 potassium channel in developing inferior colliculus neurons.
    Liu SQ; Kaczmarek LK
    J Neurosci; 1998 Nov; 18(21):8758-69. PubMed ID: 9786983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aminoglycosides block the Kv3.1 potassium channel and reduce the ability of inferior colliculus neurons to fire at high frequencies.
    Liu SQ; Kaczmarek LK
    J Neurobiol; 2005 Mar; 62(4):439-52. PubMed ID: 15547932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maturation of spiking activity in trout retinal ganglion cells coincides with upregulation of Kv3.1- and BK-related potassium channels.
    Henne J; Jeserich G
    J Neurosci Res; 2004 Jan; 75(1):44-54. PubMed ID: 14689447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of two high-threshold potassium channel subunits in the rat central auditory system.
    Li W; Kaczmarek LK; Perney TM
    J Comp Neurol; 2001 Aug; 437(2):196-218. PubMed ID: 11494252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The expression of two splice variants of the Kv3.1 potassium channel gene is regulated by different signaling pathways.
    Liu SJ; Kaczmarek LK
    J Neurosci; 1998 Apr; 18(8):2881-90. PubMed ID: 9526005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Casein kinase 2 determines the voltage dependence of the Kv3.1 channel in auditory neurons and transfected cells.
    Macica CM; Kaczmarek LK
    J Neurosci; 2001 Feb; 21(4):1160-8. PubMed ID: 11160386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of the kv3.1b potassium channel isoform adjusts the fidelity of the firing pattern of auditory neurons.
    Macica CM; von Hehn CA; Wang LY; Ho CS; Yokoyama S; Joho RH; Kaczmarek LK
    J Neurosci; 2003 Feb; 23(4):1133-41. PubMed ID: 12598601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential role for kv3.1b channels as oxygen sensors.
    Osipenko ON; Tate RJ; Gurney AM
    Circ Res; 2000 Mar; 86(5):534-40. PubMed ID: 10720415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. When, where, and how much? Expression of the Kv3.1 potassium channel in high-frequency firing neurons.
    Gan L; Kaczmarek LK
    J Neurobiol; 1998 Oct; 37(1):69-79. PubMed ID: 9777733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterologous expression of the Kv3.1 potassium channel eliminates spike broadening and the induction of a depolarizing afterpotential in the peptidergic bag cell neurons.
    Whim MD; Kaczmarek LK
    J Neurosci; 1998 Nov; 18(22):9171-80. PubMed ID: 9801357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity-dependent regulation of the potassium channel subunits Kv1.1 and Kv3.1.
    Lu Y; Monsivais P; Tempel BL; Rubel EW
    J Comp Neurol; 2004 Feb; 470(1):93-106. PubMed ID: 14755528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of Kv3 potassium channels expressed in CHO cells by a nitric oxide-activated phosphatase.
    Moreno H; Vega-Saenz de Miera E; Nadal MS; Amarillo Y; Rudy B
    J Physiol; 2001 Feb; 530(Pt 3):345-58. PubMed ID: 11281123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional and molecular analysis of transient voltage-dependent K+ currents in rat hippocampal granule cells.
    Riazanski V; Becker A; Chen J; Sochivko D; Lie A; Wiestler OD; Elger CE; Beck H
    J Physiol; 2001 Dec; 537(Pt 2):391-406. PubMed ID: 11731573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Docosahexaenoic acid block of neuronal voltage-gated K+ channels: subunit selective antagonism by zinc.
    Poling JS; Vicini S; Rogawski MA; Salem N
    Neuropharmacology; 1996; 35(7):969-82. PubMed ID: 8938727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus.
    Martina M; Schultz JH; Ehmke H; Monyer H; Jonas P
    J Neurosci; 1998 Oct; 18(20):8111-25. PubMed ID: 9763458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular evidence for a role of Shaw (Kv3) potassium channel subunits in potassium currents of dog atrium.
    Yue L; Wang Z; Rindt H; Nattel S
    J Physiol; 2000 Sep; 527 Pt 3(Pt 3):467-78. PubMed ID: 10990534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal cord interneurones labelled transneuronally from the adrenal gland by a GFP-herpes virus construct contain the potassium channel subunit Kv3.1b.
    Brooke RE; Pyner S; McLeish P; Buchan S; Deuchars J; Deuchars SA
    Auton Neurosci; 2002 Jun; 98(1-2):45-50. PubMed ID: 12144039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MinK-related peptide 2 modulates Kv2.1 and Kv3.1 potassium channels in mammalian brain.
    McCrossan ZA; Lewis A; Panaghie G; Jordan PN; Christini DJ; Lerner DJ; Abbott GW
    J Neurosci; 2003 Sep; 23(22):8077-91. PubMed ID: 12954870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential subcellular localization of the two alternatively spliced isoforms of the Kv3.1 potassium channel subunit in brain.
    Ozaita A; Martone ME; Ellisman MH; Rudy B
    J Neurophysiol; 2002 Jul; 88(1):394-408. PubMed ID: 12091563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysical and pharmacological characterization of voltage-sensitive calcium currents in neonatal rat inferior colliculus neurons.
    N'Gouemo P; Rittenhouse AR
    Neuroscience; 2000; 96(4):753-65. PubMed ID: 10727793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.