BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 9787013)

  • 1. Spike-and-wave oscillations based on the properties of GABAB receptors.
    Destexhe A
    J Neurosci; 1998 Nov; 18(21):9099-111. PubMed ID: 9787013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells.
    Destexhe A; Contreras D; Steriade M
    J Neurophysiol; 1998 Feb; 79(2):999-1016. PubMed ID: 9463458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical feedback controls the frequency and synchrony of oscillations in the visual thalamus.
    Bal T; Debay D; Destexhe A
    J Neurosci; 2000 Oct; 20(19):7478-88. PubMed ID: 11007907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiology and pharmacology of corticothalamic stimulation-evoked responses in rat somatosensory thalamic neurons in vitro.
    Kao CQ; Coulter DA
    J Neurophysiol; 1997 May; 77(5):2661-76. PubMed ID: 9163382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Medium-voltage 5-9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons.
    Pinault D; Vergnes M; Marescaux C
    Neuroscience; 2001; 105(1):181-201. PubMed ID: 11483311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can GABAA conductances explain the fast oscillation frequency of absence seizures in rodents?
    Destexhe A
    Eur J Neurosci; 1999 Jun; 11(6):2175-81. PubMed ID: 10336687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices.
    Destexhe A; Bal T; McCormick DA; Sejnowski TJ
    J Neurophysiol; 1996 Sep; 76(3):2049-70. PubMed ID: 8890314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corticothalamic inputs control the pattern of activity generated in thalamocortical networks.
    Blumenfeld H; McCormick DA
    J Neurosci; 2000 Jul; 20(13):5153-62. PubMed ID: 10864972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gamma-aminobutyric acid type B receptor-dependent burst-firing in thalamic neurons: a dynamic clamp study.
    Ulrich D; Huguenard JR
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):13245-9. PubMed ID: 8917576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic coupling among neocortical neurons during evoked and spontaneous spike-wave seizure activity.
    Steriade M; Amzica F
    J Neurophysiol; 1994 Nov; 72(5):2051-69. PubMed ID: 7884444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons.
    Timofeev I; Grenier F; Steriade M
    J Neurophysiol; 1998 Sep; 80(3):1495-513. PubMed ID: 9744954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Presynaptic GABAB receptors modulate thalamic excitation of inhibitory and excitatory neurons in the mouse barrel cortex.
    Porter JT; Nieves D
    J Neurophysiol; 2004 Nov; 92(5):2762-70. PubMed ID: 15254073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm.
    Contreras D; Steriade M
    J Physiol; 1996 Jan; 490 ( Pt 1)(Pt 1):159-79. PubMed ID: 8745285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neocortical synchronized oscillations induced by thalamic disinhibition in vivo.
    Castro-Alamancos MA
    J Neurosci; 1999 Sep; 19(18):RC27. PubMed ID: 10479720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures.
    Lytton WW; Contreras D; Destexhe A; Steriade M
    J Neurophysiol; 1997 Apr; 77(4):1679-96. PubMed ID: 9114229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An analysis of penicillin-induced generalized spike and wave discharges using simultaneous recordings of cortical and thalamic single neurons.
    Avoli M; Gloor P; Kostopoulos G; Gotman J
    J Neurophysiol; 1983 Oct; 50(4):819-37. PubMed ID: 6631465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From molecules to networks: cortical/subcortical interactions in the pathophysiology of idiopathic generalized epilepsy.
    Blumenfeld H
    Epilepsia; 2003; 44 Suppl 2():7-15. PubMed ID: 12752456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortically-induced coherence of a thalamic-generated oscillation.
    Destexhe A; Contreras D; Steriade M
    Neuroscience; 1999; 92(2):427-43. PubMed ID: 10408595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic properties of corticothalamic excitatory postsynaptic potentials and thalamic reticular inhibitory postsynaptic potentials in thalamocortical neurons of the guinea-pig dorsal lateral geniculate nucleus.
    von Krosigk M; Monckton JE; Reiner PB; McCormick DA
    Neuroscience; 1999; 91(1):7-20. PubMed ID: 10336055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronization properties of spindle oscillations in a thalamic reticular nucleus model.
    Golomb D; Wang XJ; Rinzel J
    J Neurophysiol; 1994 Sep; 72(3):1109-26. PubMed ID: 7807198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.