These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 9787125)
1. In vivo strains in pigeon flight feather shafts: implications for structural design. Corning WR; Biewener AA J Exp Biol; 1998 Nov; 201 (Pt 22)():3057-65. PubMed ID: 9787125 [TBL] [Abstract][Full Text] [Related]
2. Flexural stiffness of feather shafts: geometry rules over material properties. Bachmann T; Emmerlich J; Baumgartner W; Schneider JM; Wagner H J Exp Biol; 2012 Feb; 215(Pt 3):405-15. PubMed ID: 22246249 [TBL] [Abstract][Full Text] [Related]
3. Size scaling and stiffness of avian primary feathers: implications for the flight of Mesozoic birds. Wang X; Nudds RL; Palmer C; Dyke GJ J Evol Biol; 2012 Mar; 25(3):547-55. PubMed ID: 22260434 [TBL] [Abstract][Full Text] [Related]
4. Morphological properties of the last primaries, the tail feathers, and the alulae of Accipiter nisus, Columba livia, Falco peregrinus, and Falco tinnunculus. Schmitz A; Ponitz B; Brücker C; Schmitz H; Herweg J; Bleckmann H J Morphol; 2015 Jan; 276(1):33-46. PubMed ID: 25130288 [TBL] [Abstract][Full Text] [Related]
5. The Young's modulus of feather keratin. Bonser R; Purslow P J Exp Biol; 1995; 198(Pt 4):1029-33. PubMed ID: 9318836 [TBL] [Abstract][Full Text] [Related]
6. Analysis and comparison of protein secondary structures in the rachis of avian flight feathers. Lin PY; Huang PY; Lee YC; Ng CS PeerJ; 2022; 10():e12919. PubMed ID: 35251779 [TBL] [Abstract][Full Text] [Related]
7. In vivo pectoralis muscle force-length behavior during level flight in pigeons (Columba livia). Biewener AA; Corning WR; Tobalske BW J Exp Biol; 1998 Dec; 201 (Pt 24)():3293-307. PubMed ID: 9817827 [TBL] [Abstract][Full Text] [Related]
8. Regional patterns of pectoralis fascicle strain in the pigeon Columba livia during level flight. Soman A; Hedrick TL; Biewener AA J Exp Biol; 2005 Feb; 208(Pt 4):771-86. PubMed ID: 15695768 [TBL] [Abstract][Full Text] [Related]
9. Rachis morphology cannot accurately predict the mechanical performance of primary feathers in extant (and therefore fossil) feathered flyers. Lees J; Garner T; Cooper G; Nudds R R Soc Open Sci; 2017 Feb; 4(2):160927. PubMed ID: 28386445 [TBL] [Abstract][Full Text] [Related]
10. Seagull feather shaft: Correlation between structure and mechanical response. Wang B; Meyers MA Acta Biomater; 2017 Jan; 48():270-288. PubMed ID: 27818305 [TBL] [Abstract][Full Text] [Related]
11. The contractile properties of the M. supracoracoideus In the pigeon and starling: a case for long-axis rotation of the humerus. Poore SO; Ashcroft A; Sánchez-Haiman A; Goslow GE J Exp Biol; 1997 Dec; 200 (Pt 23)():2987-3002. PubMed ID: 9359888 [TBL] [Abstract][Full Text] [Related]
12. Specialized primary feathers produce tonal sounds during flight in rock pigeons (Columba livia). Niese RL; Tobalske BW J Exp Biol; 2016 Jul; 219(Pt 14):2173-81. PubMed ID: 27207645 [TBL] [Abstract][Full Text] [Related]
13. An engineering perspective on the microstructure and compression properties of the seagull Larus argentatus feather rachis. Zou M; Zhou J; Xu L; Song J; Liu S; Li X Micron; 2019 Nov; 126():102735. PubMed ID: 31450186 [TBL] [Abstract][Full Text] [Related]
14. A lightweight, biological structure with tailored stiffness: The feather vane. Sullivan TN; Pissarenko A; Herrera SA; Kisailus D; Lubarda VA; Meyers MA Acta Biomater; 2016 Sep; 41():27-39. PubMed ID: 27184403 [TBL] [Abstract][Full Text] [Related]
15. Spectroscopy on the wing: Investigating possible differences in protein secondary structures in feather shafts of birds using Raman spectroscopy. Laurent CM; Dyke JM; Cook RB; Dyke G; de Kat R J Struct Biol; 2020 Jul; 211(1):107529. PubMed ID: 32416130 [TBL] [Abstract][Full Text] [Related]
16. Microscopy imaging and modeling study on the mechanical properties of the primary flight feather shaft of the bean goose, Anser fabalis. Liu C; Xu L; Li X; Liu Y; Qi Y; Sun J; Zou M Microsc Res Tech; 2022 Jul; 85(7):2446-2454. PubMed ID: 35274785 [TBL] [Abstract][Full Text] [Related]
17. Anisotropic Composition and Mechanical Behavior of a Natural Thin-Walled Composite: Eagle Feather Shaft. Cai S; Han B; Xu Y; Guo E; Sun B; Zeng Y; Hou H; Wu S Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054715 [TBL] [Abstract][Full Text] [Related]
18. Correlation of the mechanical and structural properties of cortical rachis keratin of rectrices of the Toco Toucan (Ramphastos toco). Bodde SG; Meyers MA; McKittrick J J Mech Behav Biomed Mater; 2011 Jul; 4(5):723-32. PubMed ID: 21565720 [TBL] [Abstract][Full Text] [Related]
19. Failure of flight feathers under uniaxial compression. Schelestow K; Troncoso OP; Torres FG Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():923-931. PubMed ID: 28576068 [TBL] [Abstract][Full Text] [Related]
20. Elastic properties and masticatory bone stress in the macaque mandible. Dechow PC; Hylander WL Am J Phys Anthropol; 2000 Aug; 112(4):553-74. PubMed ID: 10918129 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]