These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
601 related articles for article (PubMed ID: 9787133)
21. Human neutrophils use the myeloperoxidase-hydrogen peroxide-chloride system to chlorinate but not nitrate bacterial proteins during phagocytosis. Rosen H; Crowley JR; Heinecke JW J Biol Chem; 2002 Aug; 277(34):30463-8. PubMed ID: 12060654 [TBL] [Abstract][Full Text] [Related]
22. Superoxide: The enigmatic chemical chameleon in neutrophil biology. Kettle AJ; Ashby LV; Winterbourn CC; Dickerhof N Immunol Rev; 2023 Mar; 314(1):181-196. PubMed ID: 36609987 [TBL] [Abstract][Full Text] [Related]
23. Phagocytosis of Streptococcus pyogenes by all-trans retinoic acid-differentiated HL-60 cells: roles of azurophilic granules and NADPH oxidase. Nordenfelt P; Bauer S; Lönnbro P; Tapper H PLoS One; 2009 Oct; 4(10):e7363. PubMed ID: 19806211 [TBL] [Abstract][Full Text] [Related]
24. A novel post-translational incorporation of tyrosine into multiple proteins in activated human neutrophils. Correlation with phagocytosis and activation of the NADPH oxidase-mediated respiratory burst. Nath J; Ohno Y; Gallin JI; Wright DG J Immunol; 1992 Nov; 149(10):3360-71. PubMed ID: 1331234 [TBL] [Abstract][Full Text] [Related]
25. Streptococcus pyogenes bacteria modulate membrane traffic in human neutrophils and selectively inhibit azurophilic granule fusion with phagosomes. Staali L; Bauer S; Mörgelin M; Björck L; Tapper H Cell Microbiol; 2006 Apr; 8(4):690-703. PubMed ID: 16548894 [TBL] [Abstract][Full Text] [Related]
27. A real-time-based in vitro assessment of the oxidative antimicrobial mechanisms of the myeloperoxidase-hydrogen peroxide-halide system. Atosuo J; Suominen E Mol Immunol; 2019 Dec; 116():38-44. PubMed ID: 31593870 [TBL] [Abstract][Full Text] [Related]
28. Resistance of Histoplasma capsulatum to killing by human neutrophils. Evasion of oxidative burst and lysosomal-fusion products. Kurita N; Terao K; Brummer E; Ito E; Nishimura K; Miyaji M Mycopathologia; 1991 Sep; 115(3):207-13. PubMed ID: 1660960 [TBL] [Abstract][Full Text] [Related]
29. The influence of superoxide on the production of hypochlorous acid by human neutrophils. Kettle AJ; Winterbourn CC Free Radic Res Commun; 1991; 12-13 Pt 1():47-52. PubMed ID: 1649101 [TBL] [Abstract][Full Text] [Related]
30. Bactericidal mechanisms of the granulocyte. Spitznagel JK Prog Clin Biol Res; 1977; 13():103-31. PubMed ID: 193132 [TBL] [Abstract][Full Text] [Related]
31. Neutrophil granule proteins generate bactericidal ammonia chloramine on reaction with hydrogen peroxide. Green JN; Chapman ALP; Bishop CJ; Winterbourn CC; Kettle AJ Free Radic Biol Med; 2017 Dec; 113():363-371. PubMed ID: 29055823 [TBL] [Abstract][Full Text] [Related]
32. Neutrophil NADPH oxidase is reduced at the Anaplasma phagocytophilum phagosome. IJdo JW; Mueller AC Infect Immun; 2004 Sep; 72(9):5392-401. PubMed ID: 15322037 [TBL] [Abstract][Full Text] [Related]
33. Phagocytosis following translocation of the neutrophil b-cytochrome from the specific granule to the plasma membrane is associated with an increased leakage of reactive oxygen species. Lundqvist H; Karlsson A; Follin P; Sjölin C; Dahlgren C Scand J Immunol; 1992 Dec; 36(6):885-91. PubMed ID: 1462125 [TBL] [Abstract][Full Text] [Related]
34. The bactericidal effects of the respiratory burst and the myeloperoxidase system isolated in neutrophil cytoplasts. Odell EW; Segal AW Biochim Biophys Acta; 1988 Oct; 971(3):266-74. PubMed ID: 2844290 [TBL] [Abstract][Full Text] [Related]
35. Chlorination of bacterial and neutrophil proteins during phagocytosis and killing of Staphylococcus aureus. Chapman AL; Hampton MB; Senthilmohan R; Winterbourn CC; Kettle AJ J Biol Chem; 2002 Mar; 277(12):9757-62. PubMed ID: 11733505 [TBL] [Abstract][Full Text] [Related]
36. Transient association of the nicotinamide adenine dinucleotide phosphate oxidase subunits p47phox and p67phox with phagosomes in neutrophils from patients with X-linked chronic granulomatous disease. Allen LA; DeLeo FR; Gallois A; Toyoshima S; Suzuki K; Nauseef WM Blood; 1999 May; 93(10):3521-30. PubMed ID: 10233905 [TBL] [Abstract][Full Text] [Related]
37. Roles of superoxide and myeloperoxidase in ascorbate oxidation in stimulated neutrophils and H2O2-treated HL60 cells. Parker A; Cuddihy SL; Son TG; Vissers MC; Winterbourn CC Free Radic Biol Med; 2011 Oct; 51(7):1399-405. PubMed ID: 21791243 [TBL] [Abstract][Full Text] [Related]
38. Chloride transport in functionally active phagosomes isolated from Human neutrophils. Aiken ML; Painter RG; Zhou Y; Wang G Free Radic Biol Med; 2012 Dec; 53(12):2308-17. PubMed ID: 23089227 [TBL] [Abstract][Full Text] [Related]
39. Reassessment of the microbicidal activity of reactive oxygen species and hypochlorous acid with reference to the phagocytic vacuole of the neutrophil granulocyte. Reeves EP; Nagl M; Godovac-Zimmermann J; Segal AW J Med Microbiol; 2003 Aug; 52(Pt 8):643-651. PubMed ID: 12867557 [TBL] [Abstract][Full Text] [Related]
40. Role of myeloperoxidase in the killing of Staphylococcus aureus by human neutrophils: studies with the myeloperoxidase inhibitor salicylhydroxamic acid. Humphreys JM; Davies B; Hart CA; Edwards SW J Gen Microbiol; 1989 May; 135(5):1187-93. PubMed ID: 2559945 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]