These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 9787760)

  • 1. The comparative amino acid sequences, substrate specificities and gene or cDNA nucleotide sequences of some prokaryote and eukaryote amidinotransferases: implications for evolution.
    Bedekar A; Zink RM; Sherman DH; Line TV; Van Pilsum JF
    Comp Biochem Physiol B Biochem Mol Biol; 1998 Apr; 119(4):677-90. PubMed ID: 9787760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequences and evolutionary analyses of eukaryotic-type protein kinases from Streptomyces coelicolor A3(2).
    Ogawara H; Aoyagi N; Watanabe M; Urabe H
    Microbiology (Reading); 1999 Dec; 145 ( Pt 12)():3343-3352. PubMed ID: 10627033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The amino acid sequences of human and pig L-arginine:glycine amidinotransferase.
    Humm A; Huber R; Mann K
    FEBS Lett; 1994 Feb; 339(1-2):101-7. PubMed ID: 8313955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleotide sequence of the streptomycinphosphotransferase and amidinotransferase genes from Streptomyces griseus.
    Tohyama H; Okami Y; Umezawa H
    Nucleic Acids Res; 1987 Feb; 15(4):1819-33. PubMed ID: 3029728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of L-arginine:inosamine-phosphate amidinotransferase StrB1 from Streptomyces griseus: an enzyme involved in streptomycin biosynthesis.
    Fritsche E; Bergner A; Humm A; Piepersberg W; Huber R
    Biochemistry; 1998 Dec; 37(51):17664-72. PubMed ID: 9922132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conserved domains and evolution of secreted phospholipases A(2).
    Nevalainen TJ; Cardoso JC; Riikonen PT
    FEBS J; 2012 Feb; 279(4):636-49. PubMed ID: 22177112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary analyses of the small subunit of glutamate synthase: gene order conservation, gene fusions, and prokaryote-to-eukaryote lateral gene transfers.
    Andersson JO; Roger AJ
    Eukaryot Cell; 2002 Apr; 1(2):304-10. PubMed ID: 12455964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The homologous glucose transport proteins of prokaryotes and eukaryotes.
    Henderson PJ
    Res Microbiol; 1990; 141(3):316-28. PubMed ID: 2177911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal peptidases in prokaryotes and eukaryotes--a new protease family.
    Dalbey RE; Von Heijne G
    Trends Biochem Sci; 1992 Nov; 17(11):474-8. PubMed ID: 1455520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular evolution and structure--function relationships of the superoxide dismutase gene families in angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutases.
    Fink RC; Scandalios JG
    Arch Biochem Biophys; 2002 Mar; 399(1):19-36. PubMed ID: 11883900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro- to eukaryotes.
    Landgrebe J; Dierks T; Schmidt B; von Figura K
    Gene; 2003 Oct; 316():47-56. PubMed ID: 14563551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The prokaryote-to-eukaryote transition reflected in the evolution of the V/F/A-ATPase catalytic and proteolipid subunits.
    Hilario E; Gogarten JP
    J Mol Evol; 1998 Jun; 46(6):703-15. PubMed ID: 9608053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slight sequence variations of a common fold explain the substrate specificities of tRNA-guanine transglycosylases from the three kingdoms.
    Romier C; Meyer JE; Suck D
    FEBS Lett; 1997 Oct; 416(1):93-8. PubMed ID: 9369241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aminoacyl-transferases and the N-end rule pathway of prokaryotic/eukaryotic specificity in a human pathogen.
    Graciet E; Hu RG; Piatkov K; Rhee JH; Schwarz EM; Varshavsky A
    Proc Natl Acad Sci U S A; 2006 Feb; 103(9):3078-83. PubMed ID: 16492767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular evolution of maize catalases and their relationship to other eukaryotic and prokaryotic catalases.
    Guan L; Scandalios JG
    J Mol Evol; 1996 May; 42(5):570-9. PubMed ID: 8662009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genes for mast-cell serine protease and their molecular evolution.
    Huang R; Hellman L
    Immunogenetics; 1994; 40(6):397-414. PubMed ID: 7959952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shadoo, a new protein highly conserved from fish to mammals and with similarity to prion protein.
    Premzl M; Sangiorgio L; Strumbo B; Marshall Graves JA; Simonic T; Gready JE
    Gene; 2003 Sep; 314():89-102. PubMed ID: 14527721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conserved 3'----5' exonuclease active site in prokaryotic and eukaryotic DNA polymerases.
    Bernad A; Blanco L; Lázaro JM; Martín G; Salas M
    Cell; 1989 Oct; 59(1):219-28. PubMed ID: 2790959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and characterization of an alpha-amylase gene from Streptomyces sp WL6.
    Chen I; Marcos AT; da Costa SO; Martin JF; Padilla G
    Biochem Mol Biol Int; 1995 Apr; 35(5):1059-67. PubMed ID: 7549924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.