These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 9787936)

  • 41. Genetic, temporal and developmental differences between melatonin rhythm generating systems in the teleost fish pineal organ and retina.
    Falcón J; Gothilf Y; Coon SL; Boeuf G; Klein DC
    J Neuroendocrinol; 2003 Apr; 15(4):378-82. PubMed ID: 12622837
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Regulation of the biologic rhythms in mammals. Function of the pineal gland].
    Cardinali DP
    An R Acad Nac Med (Madr); 1990; 107(3):433-42. PubMed ID: 1965997
    [No Abstract]   [Full Text] [Related]  

  • 43. Signal transmission from the suprachiasmatic nucleus to the pineal gland via the paraventricular nucleus: analysed from arg-vasopressin peptide, rPer2 mRNA and AVP mRNA changes and pineal AA-NAT mRNA after the melatonin injection during light and dark periods.
    Isobe Y; Nishino H
    Brain Res; 2004 Jul; 1013(2):204-11. PubMed ID: 15193530
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rhythmic transcription: the molecular basis of circadian melatonin synthesis.
    Foulkes NS; Borjigin J; Snyder SH; Sassone-Corsi P
    Trends Neurosci; 1997 Oct; 20(10):487-92. PubMed ID: 9347618
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nonvisual photoreceptors of the deep brain, pineal organs and retina.
    Vigh B; Manzano MJ; Zádori A; Frank CL; Lukáts A; Röhlich P; Szél A; Dávid C
    Histol Histopathol; 2002 Apr; 17(2):555-90. PubMed ID: 11962759
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Melatonin: generation and modulation of avian circadian rhythms.
    Gwinner E; Hau M; Heigl S
    Brain Res Bull; 1997; 44(4):439-44. PubMed ID: 9370209
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ontogeny of circadian and light regulation of melatonin release in Xenopus laevis embryos.
    Green CB; Liang MY; Steenhard BM; Besharse JC
    Brain Res Dev Brain Res; 1999 Oct; 117(1):109-16. PubMed ID: 10536238
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Photoreceptor cells of the pike pineal organ as cellular circadian oscillators.
    Bolliet V; Bégay V; Taragnat C; Ravault JP; Collin JP; Falcón J
    Eur J Neurosci; 1997 Apr; 9(4):643-53. PubMed ID: 9153571
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of a circadian melatonin rhythm in embryonic zebrafish.
    Kazimi N; Cahill GM
    Brain Res Dev Brain Res; 1999 Oct; 117(1):47-52. PubMed ID: 10536231
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multioscillatory circadian organization in a vertebrate, iguana iguana.
    Tosini G; Menaker M
    J Neurosci; 1998 Feb; 18(3):1105-14. PubMed ID: 9437030
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interactions between endocrine and circadian systems.
    Tsang AH; Barclay JL; Oster H
    J Mol Endocrinol; 2014 Feb; 52(1):R1-16. PubMed ID: 23997239
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Extraocular photoreception and circadian entrainment in nonmammalian vertebrates.
    Bertolucci C; Foà A
    Chronobiol Int; 2004 Jul; 21(4-5):501-19. PubMed ID: 15470951
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Control of melatonin synthesis in the mammalian pineal gland: the critical role of serotonin acetylation.
    Ganguly S; Coon SL; Klein DC
    Cell Tissue Res; 2002 Jul; 309(1):127-37. PubMed ID: 12111543
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Organisation of the circadian system in melatonin-proficient C3H and melatonin-deficient C57BL mice: a comparative investigation.
    Stehle JH; von Gall C; Korf HW
    Cell Tissue Res; 2002 Jul; 309(1):173-82. PubMed ID: 12111547
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Circadian regulation of bird song, call, and locomotor behavior by pineal melatonin in the zebra finch.
    Wang G; Harpole CE; Trivedi AK; Cassone VM
    J Biol Rhythms; 2012 Apr; 27(2):145-55. PubMed ID: 22476775
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Circadian organization and the role of the pineal in birds.
    Underwood H; Steele CT; Zivkovic B
    Microsc Res Tech; 2001 Apr; 53(1):48-62. PubMed ID: 11279670
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pineal oscillator functioning in the chicken--effect of photoperiod and melatonin.
    Turkowska E; Majewski PM; Rai S; Skwarlo-Sonta K
    Chronobiol Int; 2014 Feb; 31(1):134-43. PubMed ID: 24134119
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Physiology of avian circadian pacemakers.
    Takahashi JS; Menaker M
    Fed Proc; 1979 Nov; 38(12):2583-8. PubMed ID: 499574
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cell physiology of the pineal body.
    Marchiafava PL; Kusmic C; Longoni B; Strettoi E
    Arch Ital Biol; 1997 Mar; 135(2):183-94. PubMed ID: 9101028
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CSF generation by pineal gland results in a robust melatonin circadian rhythm in the third ventricle as an unique light/dark signal.
    Tan DX; Manchester LC; Reiter RJ
    Med Hypotheses; 2016 Jan; 86():3-9. PubMed ID: 26804589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.