These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9788069)

  • 1. Mapping image data to stereotaxic spaces: applications to brain mapping.
    Davatzikos C
    Hum Brain Mapp; 1998; 6(5-6):334-8. PubMed ID: 9788069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial transformation and registration of brain images using elastically deformable models.
    Davatzikos C
    Comput Vis Image Underst; 1997 May; 66(2):207-22. PubMed ID: 11543561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial normalization of 3D brain images using deformable models.
    Davatzikos C
    J Comput Assist Tomogr; 1996; 20(4):656-65. PubMed ID: 8708076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space.
    Collins DL; Neelin P; Peters TM; Evans AC
    J Comput Assist Tomogr; 1994; 18(2):192-205. PubMed ID: 8126267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and mapping of abnormal brain structure with a probabilistic atlas of cortical surfaces.
    Thompson PM; MacDonald D; Mega MS; Holmes CJ; Evans AC; Toga AW
    J Comput Assist Tomogr; 1997; 21(4):567-81. PubMed ID: 9216760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe.
    Hammers A; Allom R; Koepp MJ; Free SL; Myers R; Lemieux L; Mitchell TN; Brooks DJ; Duncan JS
    Hum Brain Mapp; 2003 Aug; 19(4):224-47. PubMed ID: 12874777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creation and use of a Talairach-compatible atlas for accurate, automated, nonlinear intersubject registration, and analysis of functional imaging data.
    Woods RP; Dapretto M; Sicotte NL; Toga AW; Mazziotta JC
    Hum Brain Mapp; 1999; 8(2-3):73-9. PubMed ID: 10524595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intersubject analysis of fMRI data using spatial normalization.
    Zeffiro TA; Eden GF; Woods RP; VanMeter JW
    Adv Exp Med Biol; 1997; 413():235-40. PubMed ID: 9238505
    [No Abstract]   [Full Text] [Related]  

  • 9. k-tree method for high-speed spatial normalization.
    Lancaster JL; Kochunov PV; Fox PT; Nickerson D
    Hum Brain Mapp; 1998; 6(5-6):358-63. PubMed ID: 9788072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear spatial normalization using basis functions.
    Ashburner J; Friston KJ
    Hum Brain Mapp; 1999; 7(4):254-66. PubMed ID: 10408769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereotactic atlas-based depth electrode localization in the human amygdala.
    Oya H; Kawasaki H; Dahdaleh NS; Wemmie JA; Howard MA
    Stereotact Funct Neurosurg; 2009; 87(4):219-28. PubMed ID: 19556831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alignment of magnetic-resonance brain datasets with the stereotactical coordinate system.
    Kruggel F; Yves von Cramon D
    Med Image Anal; 1999 Jun; 3(2):175-85. PubMed ID: 10711997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural network mapping for nonlinear stereotactic normalization of brain MR images.
    Kosugi Y; Sase M; Kuwatani H; Kinoshita N; Momose T; Nishikawa J; Watanabe T
    J Comput Assist Tomogr; 1993; 17(3):455-60. PubMed ID: 8491911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain templates and atlases.
    Evans AC; Janke AL; Collins DL; Baillet S
    Neuroimage; 2012 Aug; 62(2):911-22. PubMed ID: 22248580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps.
    Amunts K; Kedo O; Kindler M; Pieperhoff P; Mohlberg H; Shah NJ; Habel U; Schneider F; Zilles K
    Anat Embryol (Berl); 2005 Dec; 210(5-6):343-52. PubMed ID: 16208455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neonatal probabilistic models for brain, CSF and skull using T1-MRI data: preliminary results.
    Kazemi K; Ghadimi S; Abrishami-Moghaddam H; Grebe R; Gondry-Jouet C; Wallois F
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3892-5. PubMed ID: 19163563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of spatial normalization procedures and their impact on functional maps.
    Crivello F; Schormann T; Tzourio-Mazoyer N; Roland PE; Zilles K; Mazoyer BM
    Hum Brain Mapp; 2002 Aug; 16(4):228-50. PubMed ID: 12112765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and characterization of an automatic technique for the alignment of fMRI time series.
    Ciulla C; Deek FP
    Brain Topogr; 2001; 14(1):41-56. PubMed ID: 11599532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computerized approach for morphological analysis of the corpus callosum.
    Davatzikos C; Vaillant M; Resnick SM; Prince JL; Letovsky S; Bryan RN
    J Comput Assist Tomogr; 1996; 20(1):88-97. PubMed ID: 8576488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional probabilistic maps of the occipital sulci of the human brain in standardized stereotaxic space.
    Iaria G; Robbins S; Petrides M
    Neuroscience; 2008 Jan; 151(1):174-85. PubMed ID: 18054173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.