These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9788143)

  • 1. NCC malonyltransferase catalyses the final step of chlorophyll breakdown in rape (Brassica napus).
    Hörtensteiner S
    Phytochemistry; 1998 Oct; 49(4):953-6. PubMed ID: 9788143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How plants dispose of chlorophyll catabolites. Directly energized uptake of tetrapyrrolic breakdown products into isolated vacuoles.
    Hinder B; Schellenberg M; Rodoni S; Ginsburg S; Vogt E; Martinoia E; Matile P; Hörtensteiner S
    J Biol Chem; 1996 Nov; 271(44):27233-6. PubMed ID: 8910294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlorophyll breakdown in tobacco: on the structure of two nonfluorescent chlorophyll catabolites.
    Berghold J; Eichmüller C; Hörtensteiner S; Kräutler B
    Chem Biodivers; 2004 Apr; 1(4):657-68. PubMed ID: 17191877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Catabolites of Chlorophyll-Porphyrin in Senescent Rape Cotyledons.
    Ginsburg S; Matile P
    Plant Physiol; 1993 Jun; 102(2):521-527. PubMed ID: 12231841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colorless chlorophyll catabolites in senescent florets of broccoli (Brassica oleracea var. italica).
    Roiser MH; Müller T; Kräutler B
    J Agric Food Chem; 2015 Feb; 63(5):1385-92. PubMed ID: 25620234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlorophyll breakdown in senescent cotyledons of rape, Brassica napus L.: Enzymatic cleavage of phaeophorbide a in vitro.
    Hörtensteiner S; Vicentini F; Matile P
    New Phytol; 1995 Feb; 129(2):237-246. PubMed ID: 33874553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorophyll breakdown in spinach: on the structure of five nonfluorescent chlorophyll catabolites.
    Berghold J; Breuker K; Oberhuber M; Hörtensteiner S; Kräutler B
    Photosynth Res; 2002; 74(2):109-19. PubMed ID: 16228549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlorophyll breakdown in oilseed rape.
    Hörtensteiner S; Kräutler B
    Photosynth Res; 2000; 64(2-3):137-46. PubMed ID: 16228452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cleavage of Chlorophyll-Porphyrin (Requirement for Reduced Ferredoxin and Oxygen).
    Ginsburg S; Schellenberg M; Matile P
    Plant Physiol; 1994 Jun; 105(2):545-554. PubMed ID: 12232222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solubilization and characterization of diacylglycerol acyltransferase from microspore-derived cultures of oilseed rape.
    Little D; Weselake R; Pomeroy K; Furukawa-Stoffer T; Bagu J
    Biochem J; 1994 Dec; 304 ( Pt 3)(Pt 3):951-8. PubMed ID: 7818502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breakdown of chlorophyll: a nonenzymatic reaction accounts for the formation of the colorless "nonfluorescent" chlorophyll catabolites.
    Oberhuber M; Berghold J; Breuker K; Hortensteiner S; Krautler B
    Proc Natl Acad Sci U S A; 2003 Jun; 100(12):6910-5. PubMed ID: 12777622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: functional comparisons with Atmrp1.
    Lu YP; Li ZS; Drozdowicz YM; Hortensteiner S; Martinoia E; Rea PA
    Plant Cell; 1998 Feb; 10(2):267-82. PubMed ID: 9490749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlorophyll catabolites in senescent leaves of the lime tree (Tilia cordata).
    Scherl M; Müller T; Kräutler B
    Chem Biodivers; 2012 Nov; 9(11):2605-17. PubMed ID: 23161638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. cDNA cloning, heterologous expressions, and functional characterization of malonyl-coenzyme a:anthocyanidin 3-o-glucoside-6"-o-malonyltransferase from dahlia flowers.
    Suzuki H; Nakayama T; Yonekura-Sakakibara K; Fukui Y; Nakamura N; Yamaguchi MA; Tanaka Y; Kusumi T; Nishino T
    Plant Physiol; 2002 Dec; 130(4):2142-51. PubMed ID: 12481098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partial Purification and Characterization of Red Chlorophyll Catabolite Reductase, a Stroma Protein Involved in Chlorophyll Breakdown.
    Rodoni S; Vicentini F; Schellenberg M; Matile P; Hortensteiner S
    Plant Physiol; 1997 Oct; 115(2):677-682. PubMed ID: 12223836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification of the acyl-CoA elongase complex from developing rapeseed and characterization of the 3-ketoacyl-CoA synthase and the 3-hydroxyacyl-CoA dehydratase.
    Domergue F; Chevalier S; Créach A; Cassagne C; Lessire R
    Lipids; 2000 May; 35(5):487-94. PubMed ID: 10907783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterization of flavonoid malonyltransferase from Oryza sativa.
    Kim DH; Kim SK; Kim JH; Kim BG; Ahn JH
    Plant Physiol Biochem; 2009; 47(11-12):991-7. PubMed ID: 19733090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Malonyl-coenzyme A:isoflavone 7-O-glucoside-6"-O-malonyltransferase from roots of chick pea (Cicer arietinum L.).
    Koester J; Bussmann R; Barz W
    Arch Biochem Biophys; 1984 Nov; 234(2):513-21. PubMed ID: 6497385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profile of Chlorophyll Catabolites in Senescent Leaves of
    Roca M; Pérez-Gálvez A
    J Nat Prod; 2020 Apr; 83(4):873-880. PubMed ID: 32134654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification of a malonyltransferase from Streptomyces coelicolor A3(2) and analysis of its genetic determinant.
    Revill WP; Bibb MJ; Hopwood DA
    J Bacteriol; 1995 Jul; 177(14):3946-52. PubMed ID: 7608065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.