BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 9788181)

  • 1. [Signal transduction of intracellular Ca2+ in adrenal medullary chromaffin cells].
    Yanagihara N; Toyohira Y; Uezono Y; Ueno S; Izumi F
    Tanpakushitsu Kakusan Koso; 1998 Sep; 43(12 Suppl):1777-83. PubMed ID: 9788181
    [No Abstract]   [Full Text] [Related]  

  • 2. Calcium dynamics in bovine adrenal medulla chromaffin cell secretory granules.
    Santodomingo J; Vay L; Camacho M; Hernández-Sanmiguel E; Fonteriz RI; Lobatón CD; Montero M; Moreno A; Alvarez J
    Eur J Neurosci; 2008 Oct; 28(7):1265-74. PubMed ID: 18973554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An activity-dependent increased role for L-type calcium channels in exocytosis is regulated by adrenergic signaling in chromaffin cells.
    Polo-Parada L; Chan SA; Smith C
    Neuroscience; 2006 Dec; 143(2):445-59. PubMed ID: 16962713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for paracrine modulation of voltage-dependent calcium channels by amperometric analysis in cultured porcine adrenal chromaffin cells.
    Ohta T; Kai T; Ito S
    Brain Res; 2004 Dec; 1030(2):183-92. PubMed ID: 15571668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium signaling and exocytosis in adrenal chromaffin cells.
    García AG; García-De-Diego AM; Gandía L; Borges R; García-Sancho J
    Physiol Rev; 2006 Oct; 86(4):1093-131. PubMed ID: 17015485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinol activates tyrosine hydroxylase acutely by increasing the phosphorylation of serine40 and then serine31 in bovine adrenal chromaffin cells.
    Gelain DP; Moreira JC; Bevilaqua LR; Dickson PW; Dunkley PR
    J Neurochem; 2007 Dec; 103(6):2369-79. PubMed ID: 17908239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular signaling mechanisms mediating catecholamine release upon activation of NPY Y1 receptors in mouse chromaffin cells.
    Rosmaninho-Salgado J; Araújo IM; Alvaro AR; Duarte EP; Cavadas C
    J Neurochem; 2007 Nov; 103(3):896-903. PubMed ID: 17868303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual role of calbindin-D28K in vesicular catecholamine release from mouse chromaffin cells.
    Westerink RH; Rook MB; Beekwilder JP; Wadman WJ
    J Neurochem; 2006 Oct; 99(2):628-40. PubMed ID: 16824046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of fusion pore dynamics during exocytosis by Munc18.
    Fisher RJ; Pevsner J; Burgoyne RD
    Science; 2001 Feb; 291(5505):875-8. PubMed ID: 11157167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pituitary adenylate cyclase-activating polypeptide induces a sustained increase in intracellular free Ca(2+) concentration and catechol amine release by activating Ca(2+) influx via receptor-stimulated Ca(2+) entry, independent of store-operated Ca(2+) channels, and voltage-dependent Ca(2+) channels in bovine adrenal medullary chromaffin cells.
    Morita K; Sakakibara A; Kitayama S; Kumagai K; Tanne K; Dohi T
    J Pharmacol Exp Ther; 2002 Sep; 302(3):972-82. PubMed ID: 12183654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interferon-alpha signalling in bovine adrenal chromaffin cells: involvement of signal-transducer and activator of transcription 1 and 2, extracellular signal-regulated protein kinases 1/2 and serine 31 phosphorylation of tyrosine hydroxylase.
    Douglas SA; Bunn SJ
    J Neuroendocrinol; 2009 Mar; 21(3):200-7. PubMed ID: 19207826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linopirdine modulates calcium signaling and stimulus-secretion coupling in adrenal chromaffin cells by targeting M-type K+ channels and nicotinic acetylcholine receptors.
    Dzhura EV; He W; Currie KP
    J Pharmacol Exp Ther; 2006 Mar; 316(3):1165-74. PubMed ID: 16280412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion.
    Montero M; Alonso MT; Carnicero E; Cuchillo-Ibáñez I; Albillos A; García AG; García-Sancho J; Alvarez J
    Nat Cell Biol; 2000 Feb; 2(2):57-61. PubMed ID: 10655583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca(2+) mobilization, tyrosine hydroxylase activity, and signaling mechanisms in cultured porcine adrenal medullary chromaffin cells: effects of leptin.
    Takekoshi K; Ishii K; Kawakami Y; Isobe K; Nanmoku T; Nakai T
    Endocrinology; 2001 Jan; 142(1):290-8. PubMed ID: 11145592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adrenal medulla calcium channel population is not conserved in bovine chromaffin cells in culture.
    Benavides A; Calvo S; Tornero D; González-García C; Ceña V
    Neuroscience; 2004; 128(1):99-109. PubMed ID: 15450357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion interaction at the pore of Lc-type Ca2+ channel is sufficient to mediate depolarization-induced exocytosis.
    Lerner I; Trus M; Cohen R; Yizhar O; Nussinovitch I; Atlas D
    J Neurochem; 2006 Apr; 97(1):116-27. PubMed ID: 16515555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SV2 modulates the size of the readily releasable pool of secretory vesicles.
    Xu T; Bajjalieh SM
    Nat Cell Biol; 2001 Aug; 3(8):691-8. PubMed ID: 11483953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Molecular mechanisms of central synapse formation and maturation].
    Igarashi M
    Tanpakushitsu Kakusan Koso; 2004 Feb; 49(3 Suppl):263-9. PubMed ID: 14976740
    [No Abstract]   [Full Text] [Related]  

  • 19. CCCP enhances catecholamine release from the perfused rat adrenal medulla.
    Lim DY; Park HG; Miwa S
    Auton Neurosci; 2006 Jul; 128(1-2):37-47. PubMed ID: 16461015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium gradients and exocytosis in bovine adrenal chromaffin cells.
    Marengo FD
    Cell Calcium; 2005 Aug; 38(2):87-99. PubMed ID: 16076487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.