BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 9788240)

  • 1. Caveolin is present in intestinal cells: role in cholesterol trafficking?
    Field FJ; Born E; Murthy S; Mathur SN
    J Lipid Res; 1998 Oct; 39(10):1938-50. PubMed ID: 9788240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detergent-resistant membrane microdomains from Caco-2 cells do not contain caveolin.
    Mirre C; Monlauzeur L; Garcia M; Delgrossi MH; Le Bivic A
    Am J Physiol; 1996 Sep; 271(3 Pt 1):C887-94. PubMed ID: 8843719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of caveolin and caveolin-related proteins in the brain.
    Cameron PL; Ruffin JW; Bollag R; Rasmussen H; Cameron RS
    J Neurosci; 1997 Dec; 17(24):9520-35. PubMed ID: 9391007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation.
    Smart EJ; Ying YS; Conrad PA; Anderson RG
    J Cell Biol; 1994 Dec; 127(5):1185-97. PubMed ID: 7962084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Identification of signals and mechanisms of sorting of plasma membrane proteins in intestinal epithelial cells].
    Breuza L; Monlauzeur L; Arsanto JP; Le Bivic A
    J Soc Biol; 1999; 193(2):131-4. PubMed ID: 10451345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-terminal protein acylation confers localization to cholesterol, sphingolipid-enriched membranes but not to lipid rafts/caveolae.
    McCabe JB; Berthiaume LG
    Mol Biol Cell; 2001 Nov; 12(11):3601-17. PubMed ID: 11694592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane.
    Smart EJ; Ying Ys; Donzell WC; Anderson RG
    J Biol Chem; 1996 Nov; 271(46):29427-35. PubMed ID: 8910609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ezetimibe interferes with cholesterol trafficking from the plasma membrane to the endoplasmic reticulum in CaCo-2 cells.
    Field FJ; Watt K; Mathur SN
    J Lipid Res; 2007 Aug; 48(8):1735-45. PubMed ID: 17473178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains.
    Song KS; Li Shengwen ; Okamoto T; Quilliam LA; Sargiacomo M; Lisanti MP
    J Biol Chem; 1996 Apr; 271(16):9690-7. PubMed ID: 8621645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Caveolin-1 is not required for murine intestinal cholesterol transport.
    Valasek MA; Weng J; Shaul PW; Anderson RG; Repa JJ
    J Biol Chem; 2005 Jul; 280(30):28103-9. PubMed ID: 15919660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of caveolin and caveolae by cholesterol in MDCK cells.
    Hailstones D; Sleer LS; Parton RG; Stanley KK
    J Lipid Res; 1998 Feb; 39(2):369-79. PubMed ID: 9507997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of intestinal NPC1L1 expression by dietary fish oil and docosahexaenoic acid.
    Mathur SN; Watt KR; Field FJ
    J Lipid Res; 2007 Feb; 48(2):395-404. PubMed ID: 17114806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caveolin and MAL, two protein components of internal detergent-insoluble membranes, are in distinct lipid microenvironments in MDCK cells.
    Millán J; Puertollano R; Fan L; Alonso MA
    Biochem Biophys Res Commun; 1997 Apr; 233(3):707-12. PubMed ID: 9168919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of caveolin-1 and polarized formation of invaginated caveolae in Caco-2 and MDCK II cells.
    Vogel U; Sandvig K; van Deurs B
    J Cell Sci; 1998 Mar; 111 ( Pt 6)():825-32. PubMed ID: 9472010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloride channel ClC- 2 enhances intestinal epithelial tight junction barrier function via regulation of caveolin-1 and caveolar trafficking of occludin.
    Nighot PK; Leung L; Ma TY
    Exp Cell Res; 2017 Mar; 352(1):113-122. PubMed ID: 28161538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The sonic hedgehog receptor patched associates with caveolin-1 in cholesterol-rich microdomains of the plasma membrane.
    Karpen HE; Bukowski JT; Hughes T; Gratton JP; Sessa WC; Gailani MR
    J Biol Chem; 2001 Jun; 276(22):19503-11. PubMed ID: 11278759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. P-Glycoprotein is localized in intermediate-density membrane microdomains distinct from classical lipid rafts and caveolar domains.
    Radeva G; Perabo J; Sharom FJ
    FEBS J; 2005 Oct; 272(19):4924-37. PubMed ID: 16176266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells.
    Sargiacomo M; Sudol M; Tang Z; Lisanti MP
    J Cell Biol; 1993 Aug; 122(4):789-807. PubMed ID: 8349730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caveolin regulates kv1.5 trafficking to cholesterol-rich membrane microdomains.
    McEwen DP; Li Q; Jackson S; Jenkins PM; Martens JR
    Mol Pharmacol; 2008 Mar; 73(3):678-85. PubMed ID: 18045854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue factor pathway inhibitor in endothelial cells colocalizes with glycolipid microdomains/caveolae. Regulatory mechanism(s) of the anticoagulant properties of the endothelium.
    Lupu C; Goodwin CA; Westmuckett AD; Emeis JJ; Scully MF; Kakkar VV; Lupu F
    Arterioscler Thromb Vasc Biol; 1997 Nov; 17(11):2964-74. PubMed ID: 9409283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.