These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 9788308)
1. The pH dependence of predictive models relating electrophoretic mobility to peptide chemico-physical properties in capillary zone electrophoresis. Castagnola M; Rossetti DV; Corda M; Pellegrini M; Misiti F; Olianas A; Giardina B; Messana I Electrophoresis; 1998 Oct; 19(13):2273-7. PubMed ID: 9788308 [TBL] [Abstract][Full Text] [Related]
2. Determination of peptide dissociation constants and Stokes radius at different protonation stages by capillary electrophoresis. Castagnola M; Rossetti DV; Cassiano L; Misiti F; Pennacchietti L; Giardina B; Messana I Electrophoresis; 1996 Dec; 17(12):1925-30. PubMed ID: 9034777 [TBL] [Abstract][Full Text] [Related]
4. Predictive model for capillary electrophoretic peptide mobility in 2,2,2-trifluoroethanol-water solution. Castagnola M; Rossetti DV; Corda M; Pellegrini M; Misiti F; Olianas A; Giardina B; Messana I Electrophoresis; 1998 Jul; 19(10):1728-32. PubMed ID: 9719552 [TBL] [Abstract][Full Text] [Related]
5. Rules relating electrophoretic mobility, charge and molecular size of peptides and proteins. Adamson NJ; Reynolds EC J Chromatogr B Biomed Sci Appl; 1997 Oct; 699(1-2):133-47. PubMed ID: 9392373 [TBL] [Abstract][Full Text] [Related]
6. Capillary zone electrophoresis of peptides: prediction of the electrophoretic mobility and resolution. Castagnola M; Cassiano L; Messana I; Nocca G; Rabino R; Rossetti DV; Giardina B J Chromatogr B Biomed Appl; 1994 Jun; 656(1):87-97. PubMed ID: 7952052 [TBL] [Abstract][Full Text] [Related]
7. Peptide mobility and peptide mapping in capillary zone electrophoresis. Experimental determination and theoretical simulation. Janini GM; Metral CJ; Issaq HJ; Muschik GM J Chromatogr A; 1999 Jul; 848(1-2):417-33. PubMed ID: 10427763 [TBL] [Abstract][Full Text] [Related]
8. Affinity capillary electrophoresis study of the linkage existing between proton and zinc ion binding to bacitracin A1. Castagnola M; Rossetti DV; Inzitari R; Vitali A; Lupi A; Zuppi C; Cabras T; Fadda MB; Petruzzelli R; Giardina B; Messana I Electrophoresis; 2003 Mar; 24(5):801-7. PubMed ID: 12627440 [TBL] [Abstract][Full Text] [Related]
9. Determination of acidity constants and prediction of electrophoretic separation of amyloid beta peptides. Peró-Gascón R; Benavente F; Barbosa J; Sanz-Nebot V J Chromatogr A; 2017 Jul; 1508():148-157. PubMed ID: 28619586 [TBL] [Abstract][Full Text] [Related]
10. Capillary zone electrophoresis of synthetic opioid and tachykinin peptides. Lee HG; Desiderio DM J Chromatogr A; 1994 Apr; 667(1-2):271-83. PubMed ID: 7517756 [TBL] [Abstract][Full Text] [Related]
11. [Optimization of capillary electrophoretic separation of more nucleotide base acids]. Surmann JP; Warnke U Pharmazie; 2001 Dec; 56(12):943-5. PubMed ID: 11802656 [TBL] [Abstract][Full Text] [Related]
12. Effect of 2,2,2-trifluoroethanol on capillary zone electrophoretic peptide separations. Castagnola M; Cassiano L; Messana I; Paci M; Rossetti DV; Giardina B J Chromatogr A; 1996 May; 735(1-2):271-81. PubMed ID: 8767744 [TBL] [Abstract][Full Text] [Related]
13. Semi-empirical relationships between effective mobility, charge, and molecular weight of pharmaceuticals by pressure-assisted capillary electrophoresis: applications in drug discovery. Miller JM; Blackburn AC; Shi Y; Melzak AJ; Ando HY Electrophoresis; 2002 Sep; 23(17):2833-41. PubMed ID: 12207289 [TBL] [Abstract][Full Text] [Related]
14. Prediction of electrophoretic mobilities of peptides in capillary zone electrophoresis by quantitative structure-mobility relationships using the Offord model and artificial neural networks. Jalali-Heravi M; Shen Y; Hassanisadi M; Khaledi MG Electrophoresis; 2005 May; 26(10):1874-85. PubMed ID: 15825217 [TBL] [Abstract][Full Text] [Related]
15. Predicting Electrophoretic Mobility of Tryptic Peptides for High-Throughput CZE-MS Analysis. Krokhin OV; Anderson G; Spicer V; Sun L; Dovichi NJ Anal Chem; 2017 Feb; 89(3):2000-2008. PubMed ID: 28208305 [TBL] [Abstract][Full Text] [Related]
16. Electrophoretic behaviour of quinolones in capillary electrophoresis. Effect of pH and evaluation of ionization constants. Barbosa J; Barrón D; Jiménez-Lozano E J Chromatogr A; 1999 Apr; 839(1-2):183-92. PubMed ID: 10327625 [TBL] [Abstract][Full Text] [Related]
17. Modelling migration behavior of peptide hormones in capillary electrophoresis-electrospray mass spectrometry. Benavente F; Balaguer E; Barbosa J; Sanz-Nebot V J Chromatogr A; 2006 Jun; 1117(1):94-102. PubMed ID: 16616758 [TBL] [Abstract][Full Text] [Related]
18. Electrophoretic mobility for peptides with post-translational modifications in capillary electrophoresis. Kim J; Zand R; Lubman DM Electrophoresis; 2003 Mar; 24(5):782-93. PubMed ID: 12627438 [TBL] [Abstract][Full Text] [Related]
19. Quantitative theory of electroosmotic flow in fused-silica capillaries using an extended site-dissociation--site-binding model. Zhou MX; Foley JP Anal Chem; 2006 Mar; 78(6):1849-58. PubMed ID: 16536420 [TBL] [Abstract][Full Text] [Related]
20. Estimation of global structural and transport properties of peptides through the modeling of their CZE mobility data. Piaggio MV; Peirotti MB; Deiber JA J Sep Sci; 2010 Aug; 33(16):2423-9. PubMed ID: 20506428 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]